diff --git a/modules/deeplearning/cnn_cld_frac_mod_res.py b/modules/deeplearning/cnn_cld_frac_mod_res.py index 48b13e4767f906a88570c1f0c17704e743f11d2a..bf690cf89707aefb52e5349f2584fd0535971bc4 100644 --- a/modules/deeplearning/cnn_cld_frac_mod_res.py +++ b/modules/deeplearning/cnn_cld_frac_mod_res.py @@ -35,7 +35,7 @@ EARLY_STOP = True NOISE_TRAINING = False NOISE_STDDEV = 0.01 -DO_AUGMENT = False +DO_AUGMENT = True DO_SMOOTH = True SIGMA = 1.0 @@ -166,6 +166,7 @@ def upsample_mean(grd): def get_grid_cell_mean(grd_k): + grd_k = np.where(np.isnan(grd_k), 0, grd_k) a = grd_k[:, 0::2, 0::2] b = grd_k[:, 1::2, 0::2] c = grd_k[:, 0::2, 1::2] @@ -176,6 +177,7 @@ def get_grid_cell_mean(grd_k): def get_min_max_std(grd_k): + grd_k = np.where(np.isnan(grd_k), 0, grd_k) a = grd_k[:, 0::2, 0::2] b = grd_k[:, 1::2, 0::2] c = grd_k[:, 0::2, 1::2] @@ -354,13 +356,15 @@ class SRCNN: tmp = input_data[:, idx, :, :] lo, hi, std, avg = get_min_max_std(tmp) + # std = np.where(np.isnan(std), 0, std) lo = normalize(lo, param, mean_std_dct) hi = normalize(hi, param, mean_std_dct) - std = np.where(np.isnan(std), 0, std) + avg = normalize(avg, param, mean_std_dct) data_norm.append(lo[:, 0:66, 0:66]) data_norm.append(hi[:, 0:66, 0:66]) - data_norm.append(std[:, 0:66, 0:66]) + data_norm.append(avg[:, 0:66, 0:66]) + # data_norm.append(std[:, 0:66, 0:66]) # --------------------------------------------------- tmp = input_data[:, label_idx, :, :] tmp = np.where(np.isnan(tmp), 0, tmp)