Skip to content
Snippets Groups Projects
Commit babdb607 authored by tomrink's avatar tomrink
Browse files

initial commit...

parent 35a7736d
No related branches found
No related tags found
No related merge requests found
import glob
import tensorflow as tf
from util.plot_cm import confusion_matrix_values
from util.setup import logdir, modeldir, now, ancillary_path
from util.util import EarlyStop, normalize, denormalize, get_grid_values_all
import os, datetime
import numpy as np
import pickle
import h5py
import xarray as xr
import gc
AUTOTUNE = tf.data.AUTOTUNE
LOG_DEVICE_PLACEMENT = False
PROC_BATCH_SIZE = 4
PROC_BATCH_BUFFER_SIZE = 5000
NumClasses = 5
if NumClasses == 2:
NumLogits = 1
else:
NumLogits = NumClasses
BATCH_SIZE = 128
NUM_EPOCHS = 80
TRACK_MOVING_AVERAGE = False
EARLY_STOP = True
NOISE_TRAINING = False
NOISE_STDDEV = 0.01
DO_AUGMENT = False
DO_SMOOTH = False
SIGMA = 1.0
DO_ZERO_OUT = False
# setup scaling parameters dictionary
mean_std_dct = {}
mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l2 = pickle.load(f)
f.close()
mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l1b = pickle.load(f)
f.close()
mean_std_dct.update(mean_std_dct_l1b)
mean_std_dct.update(mean_std_dct_l2)
IMG_DEPTH = 1
label_param = 'cloud_probability'
params = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param]
params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param]
data_params_half = ['temp_11_0um_nom']
data_params_full = ['refl_0_65um_nom']
label_idx_i = params_i.index(label_param)
label_idx = params.index(label_param)
print('data_params_half: ', data_params_half)
print('data_params_full: ', data_params_full)
print('label_param: ', label_param)
KERNEL_SIZE = 3 # target size: (128, 128)
N_X = N_Y = 1
X_LEN = Y_LEN = 128
if KERNEL_SIZE == 3:
slc_x = slice(1, int((N_X*X_LEN)/2) + 3)
slc_y = slice(1, int((N_Y*Y_LEN)/2) + 3)
x_128 = slice(4, N_X*X_LEN + 4)
y_128 = slice(4, N_Y*Y_LEN + 4)
# elif KERNEL_SIZE == 5: These no longer apply here
# slc_x = slice(3, 135)
# slc_y = slice(3, 135)
# slc_x_2 = slice(2, 137, 2)
# slc_y_2 = slice(2, 137, 2)
# x_128 = slice(5, 133)
# y_128 = slice(5, 133)
# t = np.arange(1, 67, 0.5)
# s = np.arange(1, 67, 0.5)
# x_2 = np.arange(68)
# y_2 = np.arange(68)
# ----------------------------------------
def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME',
kernel_initializer='he_uniform', scale=None, kernel_size=3,
do_drop_out=True, drop_rate=0.5, do_batch_norm=True):
with tf.name_scope(block_name):
skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv)
skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, activation=None)(skip)
if scale is not None:
skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip)
if do_drop_out:
skip = tf.keras.layers.Dropout(drop_rate)(skip)
if do_batch_norm:
skip = tf.keras.layers.BatchNormalization()(skip)
conv = conv + skip
print(block_name+':', conv.shape)
return conv
def upsample_mean(grd):
bsize, ylen, xlen = grd.shape
up = np.zeros((bsize, ylen*2, xlen*2))
up[:, ::2, ::2] = grd[:, ::2, ::2]
up[:, 1::2, ::2] = grd[:, ::2, ::2]
up[:, ::2, 1::2] = grd[:, ::2, ::2]
up[:, 1::2, 1::2] = grd[:, ::2, ::2]
return up
def get_grid_cell_mean(grd_k):
grd_k = np.where(np.isnan(grd_k), 0, grd_k)
a = grd_k[:, 0::2, 0::2]
b = grd_k[:, 1::2, 0::2]
c = grd_k[:, 0::2, 1::2]
d = grd_k[:, 1::2, 1::2]
mean = np.nanmean([a, b, c, d], axis=0)
return mean
def get_min_max_std(grd_k):
grd_k = np.where(np.isnan(grd_k), 0, grd_k)
a = grd_k[:, 0::2, 0::2]
b = grd_k[:, 1::2, 0::2]
c = grd_k[:, 0::2, 1::2]
d = grd_k[:, 1::2, 1::2]
lo = np.nanmin([a, b, c, d], axis=0)
hi = np.nanmax([a, b, c, d], axis=0)
std = np.nanstd([a, b, c, d], axis=0)
avg = np.nanmean([a, b, c, d], axis=0)
return lo, hi, std, avg
def get_label_data(grd_k):
grd_k = np.where(np.isnan(grd_k), 0, grd_k)
grd_k = np.where(grd_k < 0.50, 0, 1)
a = grd_k[:, 0::2, 0::2]
b = grd_k[:, 1::2, 0::2]
c = grd_k[:, 0::2, 1::2]
d = grd_k[:, 1::2, 1::2]
s = a + b + c + d
cat_0 = (s == 0)
cat_1 = np.logical_and(s > 0, s < 4)
cat_2 = (s == 4)
s[cat_0] = 0
s[cat_1] = 1
s[cat_2] = 2
return s
def get_label_data_5cat(grd_k):
grd_k = np.where(np.isnan(grd_k), 0, grd_k)
# grd_u = np.where(np.logical_and(grd_k > 0.45, grd_k < 0.55), 1, 0)
grd_k = np.where(grd_k < 0.5, 0, 1)
a = grd_k[:, 0::2, 0::2]
b = grd_k[:, 1::2, 0::2]
c = grd_k[:, 0::2, 1::2]
d = grd_k[:, 1::2, 1::2]
s = a + b + c + d
cat_0 = (s == 0)
cat_1 = (s == 1)
cat_2 = (s == 2)
cat_3 = (s == 3)
cat_4 = (s == 4)
s[cat_0] = 0
s[cat_1] = 1
s[cat_2] = 2
s[cat_3] = 3
s[cat_4] = 4
# a = grd_u[:, 0::2, 0::2]
# b = grd_u[:, 1::2, 0::2]
# c = grd_u[:, 0::2, 1::2]
# d = grd_u[:, 1::2, 1::2]
# s_u = a + b + c + d
# cat_u = (s_u == 4)
# s[cat_u] = 5
return s
class SRCNN:
def __init__(self):
self.train_data = None
self.train_label = None
self.test_data = None
self.test_label = None
self.test_data_denorm = None
self.train_dataset = None
self.inner_train_dataset = None
self.test_dataset = None
self.eval_dataset = None
self.X_img = None
self.X_prof = None
self.X_u = None
self.X_v = None
self.X_sfc = None
self.inputs = []
self.y = None
self.handle = None
self.inner_handle = None
self.in_mem_batch = None
self.h5f_l1b_trn = None
self.h5f_l1b_tst = None
self.h5f_l2_trn = None
self.h5f_l2_tst = None
self.logits = None
self.predict_data = None
self.predict_dataset = None
self.mean_list = None
self.std_list = None
self.training_op = None
self.correct = None
self.accuracy = None
self.loss = None
self.pred_class = None
self.variable_averages = None
self.global_step = None
self.writer_train = None
self.writer_valid = None
self.writer_train_valid_loss = None
self.OUT_OF_RANGE = False
self.model = None
self.optimizer = None
self.ema = None
self.train_loss = None
self.train_accuracy = None
self.test_loss = None
self.test_accuracy = None
self.test_auc = None
self.test_recall = None
self.test_precision = None
self.test_confusion_matrix = None
self.test_true_pos = None
self.test_true_neg = None
self.test_false_pos = None
self.test_false_neg = None
self.test_labels = []
self.test_preds = []
self.test_probs = None
self.learningRateSchedule = None
self.num_data_samples = None
self.initial_learning_rate = None
self.data_dct = None
self.train_data_files = None
self.train_label_files = None
self.test_data_files = None
self.test_label_files = None
# self.n_chans = len(data_params_half) + len(data_params_full) + 1
self.n_chans = 5
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
self.inputs.append(self.X_img)
tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)
def get_in_mem_data_batch(self, idxs, is_training):
if is_training:
data_files = self.train_data_files
label_files = self.train_label_files
else:
data_files = self.test_data_files
label_files = self.test_label_files
data_s = []
label_s = []
for k in idxs:
f = data_files[k]
nda = np.load(f)
data_s.append(nda)
f = label_files[k]
nda = np.load(f)
label_s.append(nda)
input_data = np.concatenate(data_s)
input_label = np.concatenate(label_s)
data_norm = []
for param in data_params_half:
# If next 2 uncommented, take out get_grid_cell_mean
# idx = params.index(param)
# tmp = input_data[:, idx, :, :]
idx = params_i.index(param)
tmp = input_label[:, idx, :, :]
tmp = get_grid_cell_mean(tmp)
tmp = tmp[:, slc_y, slc_x]
tmp = normalize(tmp, param, mean_std_dct)
data_norm.append(tmp)
for param in data_params_full:
idx = params_i.index(param)
tmp = input_label[:, idx, :, :]
lo, hi, std, avg = get_min_max_std(tmp)
lo = normalize(lo, param, mean_std_dct)
hi = normalize(hi, param, mean_std_dct)
avg = normalize(avg, param, mean_std_dct)
data_norm.append(lo[:, slc_y, slc_x])
data_norm.append(hi[:, slc_y, slc_x])
data_norm.append(avg[:, slc_y, slc_x])
# ---------------------------------------------------
# If next uncommented, take out get_grid_cell_mean
# tmp = input_data[:, label_idx, :, :]
tmp = input_label[:, label_idx_i, :, :]
tmp = get_grid_cell_mean(tmp)
tmp = tmp[:, slc_y, slc_x]
data_norm.append(tmp)
# ---------
data = np.stack(data_norm, axis=3)
data = data.astype(np.float32)
# -----------------------------------------------------
# -----------------------------------------------------
label = input_label[:, label_idx_i, :, :]
label = label[:, y_128, x_128]
if NumClasses == 5:
label = get_label_data_5cat(label)
else:
label = get_label_data(label)
label = np.where(np.isnan(label), 0, label)
label = np.expand_dims(label, axis=3)
data = data.astype(np.float32)
label = label.astype(np.float32)
if is_training and DO_AUGMENT:
data_ud = np.flip(data, axis=1)
label_ud = np.flip(label, axis=1)
data_lr = np.flip(data, axis=2)
label_lr = np.flip(label, axis=2)
data = np.concatenate([data, data_ud, data_lr])
label = np.concatenate([label, label_ud, label_lr])
return data, label
def get_in_mem_data_batch_train(self, idxs):
return self.get_in_mem_data_batch(idxs, True)
def get_in_mem_data_batch_test(self, idxs):
return self.get_in_mem_data_batch(idxs, False)
@tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
def data_function(self, indexes):
out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32])
return out
@tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
def data_function_test(self, indexes):
out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32])
return out
def get_train_dataset(self, indexes):
indexes = list(indexes)
dataset = tf.data.Dataset.from_tensor_slices(indexes)
dataset = dataset.batch(PROC_BATCH_SIZE)
dataset = dataset.map(self.data_function, num_parallel_calls=AUTOTUNE)
dataset = dataset.cache()
if DO_AUGMENT:
dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
dataset = dataset.prefetch(buffer_size=AUTOTUNE)
self.train_dataset = dataset
def get_test_dataset(self, indexes):
indexes = list(indexes)
dataset = tf.data.Dataset.from_tensor_slices(indexes)
dataset = dataset.batch(PROC_BATCH_SIZE)
dataset = dataset.map(self.data_function_test, num_parallel_calls=AUTOTUNE)
dataset = dataset.cache()
self.test_dataset = dataset
def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples):
self.train_data_files = train_data_files
self.train_label_files = train_label_files
self.test_data_files = test_data_files
self.test_label_files = test_label_files
trn_idxs = np.arange(len(train_data_files))
np.random.shuffle(trn_idxs)
tst_idxs = np.arange(len(test_data_files))
self.get_train_dataset(trn_idxs)
self.get_test_dataset(tst_idxs)
self.num_data_samples = num_train_samples # approximately
print('datetime: ', now)
print('training and test data: ')
print('---------------------------')
print('num train samples: ', self.num_data_samples)
print('BATCH SIZE: ', BATCH_SIZE)
print('num test samples: ', tst_idxs.shape[0])
print('setup_pipeline: Done')
def setup_test_pipeline(self, test_data_files, test_label_files):
self.test_data_files = test_data_files
self.test_label_files = test_label_files
tst_idxs = np.arange(len(test_data_files))
self.get_test_dataset(tst_idxs)
print('setup_test_pipeline: Done')
def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2):
print('build_cnn')
padding = "SAME"
# activation = tf.nn.relu
# activation = tf.nn.elu
activation = tf.nn.relu
momentum = 0.99
num_filters = 64
input_2d = self.inputs[0]
print('input: ', input_2d.shape)
conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d)
print(conv.shape)
# if NOISE_TRAINING:
# conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)
scale = 0.2
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', kernel_size=KERNEL_SIZE, scale=scale)
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale)
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale)
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale)
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale)
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', kernel_size=KERNEL_SIZE, scale=scale)
conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b)
# conv = conv + conv_b
conv = conv_b
print(conv.shape)
if NumClasses == 2:
final_activation = tf.nn.sigmoid # For binary
else:
final_activation = tf.nn.softmax # For multi-class
# This is effectively a Dense layer
self.logits = tf.keras.layers.Conv2D(NumLogits, kernel_size=1, strides=1, padding=padding, activation=final_activation)(conv)
print(self.logits.shape)
def build_training(self):
if NumClasses == 2:
self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only
else:
self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) # For multi-class
# self.loss = tf.keras.losses.MeanAbsoluteError() # Regression
# decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
initial_learning_rate = 0.002
decay_rate = 0.95
steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch
decay_steps = int(steps_per_epoch) * 4
print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)
self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)
optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule)
if TRACK_MOVING_AVERAGE:
# Not sure that this works properly (from tfa)
# optimizer = tfa.optimizers.MovingAverage(optimizer)
self.ema = tf.train.ExponentialMovingAverage(decay=0.9999)
self.optimizer = optimizer
self.initial_learning_rate = initial_learning_rate
def build_evaluation(self):
self.train_loss = tf.keras.metrics.Mean(name='train_loss')
self.test_loss = tf.keras.metrics.Mean(name='test_loss')
if NumClasses == 2:
self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
self.test_auc = tf.keras.metrics.AUC(name='test_auc')
self.test_recall = tf.keras.metrics.Recall(name='test_recall')
self.test_precision = tf.keras.metrics.Precision(name='test_precision')
self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg')
self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos')
self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg')
self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos')
else:
self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
@tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
def train_step(self, inputs, labels):
labels = tf.squeeze(labels, axis=[3])
with tf.GradientTape() as tape:
pred = self.model([inputs], training=True)
loss = self.loss(labels, pred)
total_loss = loss
if len(self.model.losses) > 0:
reg_loss = tf.math.add_n(self.model.losses)
total_loss = loss + reg_loss
gradients = tape.gradient(total_loss, self.model.trainable_variables)
self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
if TRACK_MOVING_AVERAGE:
self.ema.apply(self.model.trainable_variables)
self.train_loss(loss)
self.train_accuracy(labels, pred)
return loss
@tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
def test_step(self, inputs, labels):
labels = tf.squeeze(labels, axis=[3])
pred = self.model([inputs], training=False)
t_loss = self.loss(labels, pred)
self.test_loss(t_loss)
self.test_accuracy(labels, pred)
# @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
# decorator commented out because pred.numpy(): pred not evaluated yet.
def predict(self, inputs, labels):
pred = self.model([inputs], training=False)
# t_loss = self.loss(tf.squeeze(labels, axis=[3]), pred)
t_loss = self.loss(labels, pred)
self.test_labels.append(labels)
self.test_preds.append(pred.numpy())
self.test_loss(t_loss)
self.test_accuracy(labels, pred)
def reset_test_metrics(self):
self.test_loss.reset_states()
self.test_accuracy.reset_states()
def get_metrics(self):
recall = self.test_recall.result()
precsn = self.test_precision.result()
f1 = 2 * (precsn * recall) / (precsn + recall)
tn = self.test_true_neg.result()
tp = self.test_true_pos.result()
fn = self.test_false_neg.result()
fp = self.test_false_pos.result()
mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
return f1, mcc
def do_training(self, ckpt_dir=None):
if ckpt_dir is None:
if not os.path.exists(modeldir):
os.mkdir(modeldir)
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
else:
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
ckpt.restore(ckpt_manager.latest_checkpoint)
self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train'))
self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid'))
self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss'))
step = 0
total_time = 0
best_test_loss = np.finfo(dtype=np.float).max
if EARLY_STOP:
es = EarlyStop()
for epoch in range(NUM_EPOCHS):
self.train_loss.reset_states()
self.train_accuracy.reset_states()
t0 = datetime.datetime.now().timestamp()
proc_batch_cnt = 0
n_samples = 0
for data, label in self.train_dataset:
trn_ds = tf.data.Dataset.from_tensor_slices((data, label))
trn_ds = trn_ds.batch(BATCH_SIZE)
for mini_batch in trn_ds:
if self.learningRateSchedule is not None:
loss = self.train_step(mini_batch[0], mini_batch[1])
if (step % 100) == 0:
with self.writer_train.as_default():
tf.summary.scalar('loss_trn', loss.numpy(), step=step)
tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step)
tf.summary.scalar('num_train_steps', step, step=step)
tf.summary.scalar('num_epochs', epoch, step=step)
self.reset_test_metrics()
for data_tst, label_tst in self.test_dataset:
tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst))
tst_ds = tst_ds.batch(BATCH_SIZE)
for mini_batch_test in tst_ds:
self.test_step(mini_batch_test[0], mini_batch_test[1])
with self.writer_valid.as_default():
tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
with self.writer_train_valid_loss.as_default():
tf.summary.scalar('loss_trn', loss.numpy(), step=step)
tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
self.optimizer._decayed_lr('float32').numpy())
step += 1
print('train loss: ', loss.numpy())
proc_batch_cnt += 1
n_samples += data.shape[0]
print('proc_batch_cnt: ', proc_batch_cnt, n_samples)
t1 = datetime.datetime.now().timestamp()
print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
total_time += (t1-t0)
self.reset_test_metrics()
for data, label in self.test_dataset:
ds = tf.data.Dataset.from_tensor_slices((data, label))
ds = ds.batch(BATCH_SIZE)
for mini_batch in ds:
self.test_step(mini_batch[0], mini_batch[1])
print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
print('------------------------------------------------------')
tst_loss = self.test_loss.result().numpy()
if tst_loss < best_test_loss:
best_test_loss = tst_loss
ckpt_manager.save()
if EARLY_STOP and es.check_stop(tst_loss):
break
print('total time: ', total_time)
self.writer_train.close()
self.writer_valid.close()
self.writer_train_valid_loss.close()
def build_model(self):
self.build_srcnn()
self.model = tf.keras.Model(self.inputs, self.logits)
def restore(self, ckpt_dir):
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
ckpt.restore(ckpt_manager.latest_checkpoint)
self.reset_test_metrics()
for data, label in self.test_dataset:
ds = tf.data.Dataset.from_tensor_slices((data, label))
ds = ds.batch(BATCH_SIZE)
for mini_batch_test in ds:
self.predict(mini_batch_test[0], mini_batch_test[1])
print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
labels = np.concatenate(self.test_labels)
preds = np.concatenate(self.test_preds)
print(labels.shape, preds.shape)
return labels, preds
def do_evaluate(self, inputs, ckpt_dir):
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
ckpt.restore(ckpt_manager.latest_checkpoint)
self.reset_test_metrics()
pred = self.model([inputs], training=False)
self.test_probs = pred
pred = pred.numpy()
return pred
def run(self, directory, ckpt_dir=None, num_data_samples=50000):
train_data_files = glob.glob(directory+'train*mres*.npy')
valid_data_files = glob.glob(directory+'valid*mres*.npy')
train_label_files = glob.glob(directory+'train*ires*.npy')
valid_label_files = glob.glob(directory+'valid*ires*.npy')
self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)
self.build_model()
self.build_training()
self.build_evaluation()
self.do_training(ckpt_dir=ckpt_dir)
def run_restore(self, directory, ckpt_dir):
self.num_data_samples = 1000
valid_data_files = glob.glob(directory + 'valid*mres*.npy')
valid_label_files = glob.glob(directory + 'valid*ires*.npy')
self.setup_test_pipeline(valid_data_files, valid_label_files)
self.build_model()
self.build_training()
self.build_evaluation()
return self.restore(ckpt_dir)
def run_evaluate(self, data, ckpt_dir):
# data = tf.convert_to_tensor(data, dtype=tf.float32)
self.num_data_samples = 80000
self.build_model()
self.build_training()
self.build_evaluation()
return self.do_evaluate(data, ckpt_dir)
def run_restore_static(directory, ckpt_dir, out_file=None):
nn = SRCNN()
labels, preds = nn.run_restore(directory, ckpt_dir)
if out_file is not None:
np.save(out_file,
[np.squeeze(labels), preds.argmax(axis=3)])
def run_evaluate_static(in_file, out_file, ckpt_dir):
gc.collect()
h5f = h5py.File(in_file, 'r')
bt = get_grid_values_all(h5f, 'orig/temp_11_0um')
y_len, x_len = bt.shape[0], bt.shape[1]
lons = get_grid_values_all(h5f, 'orig/longitude')
lats = get_grid_values_all(h5f, 'orig/latitude')
bt = np.where(np.isnan(bt), 0, bt)
bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct)
refl = get_grid_values_all(h5f, 'super/refl_0_65um')
refl = np.where(np.isnan(refl), 0, refl)
refl = np.expand_dims(refl, axis=0)
refl_lo, refl_hi, refl_std, refl_avg = get_min_max_std(refl)
refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct)
refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct)
refl_avg = normalize(refl_avg, 'refl_0_65um_nom', mean_std_dct)
refl_lo = np.squeeze(refl_lo)
refl_hi = np.squeeze(refl_hi)
refl_avg = np.squeeze(refl_avg)
cp = get_grid_values_all(h5f, 'orig/'+label_param)
cp = np.where(np.isnan(cp), 0, cp)
data = np.stack([bt, refl_lo, refl_hi, refl_avg, cp], axis=2)
data = np.expand_dims(data, axis=0)
h5f.close()
nn = SRCNN()
probs = nn.run_evaluate(data, ckpt_dir)
cld_frac = probs.argmax(axis=3)
cld_frac = cld_frac.astype(np.int8)
cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8)
border = int((KERNEL_SIZE - 1)/2)
cld_frac_out[border:y_len - border, border:x_len - border] = cld_frac[0, :, :]
bt = denormalize(bt, 'temp_11_0um_nom', mean_std_dct)
refl_avg = denormalize(refl_avg, 'refl_0_65um_nom', mean_std_dct)
var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
dims = ['num_params', 'y', 'x']
da = xr.DataArray(np.stack([cld_frac_out, bt, refl_avg], axis=0), dims=dims)
da.assign_coords({
'num_params': var_names,
'lat': (['y', 'x'], lats),
'lon': (['y', 'x'], lons)
})
if out_file is not None:
np.save(out_file, (cld_frac_out, bt, refl_avg, cp, lons, lats))
else:
return [cld_frac_out, bt, refl_avg, cp, lons, lats]
def analyze_3cat(file):
tup = np.load(file, allow_pickle=True)
lbls = tup[0]
pred = tup[1]
lbls = lbls.flatten()
pred = pred.flatten()
print(np.sum(lbls == 0), np.sum(lbls == 1), np.sum(lbls == 2))
msk_0_1 = lbls != 2
msk_1_2 = lbls != 0
msk_0_2 = lbls != 1
lbls_0_1 = lbls[msk_0_1]
pred_0_1 = pred[msk_0_1]
pred_0_1 = np.where(pred_0_1 == 2, 1, pred_0_1)
# ----
lbls_1_2 = lbls[msk_1_2]
lbls_1_2 = np.where(lbls_1_2 == 1, 0, lbls_1_2)
lbls_1_2 = np.where(lbls_1_2 == 2, 1, lbls_1_2)
pred_1_2 = pred[msk_1_2]
pred_1_2 = np.where(pred_1_2 == 0, -9, pred_1_2)
pred_1_2 = np.where(pred_1_2 == 1, 0, pred_1_2)
pred_1_2 = np.where(pred_1_2 == 2, 1, pred_1_2)
pred_1_2 = np.where(pred_1_2 == -9, 1, pred_1_2)
# ----
lbls_0_2 = lbls[msk_0_2]
lbls_0_2 = np.where(lbls_0_2 == 2, 1, lbls_0_2)
pred_0_2 = pred[msk_0_2]
pred_0_2 = np.where(pred_0_2 == 2, 1, pred_0_2)
cm_0_1 = confusion_matrix_values(lbls_0_1, pred_0_1)
cm_1_2 = confusion_matrix_values(lbls_1_2, pred_1_2)
cm_0_2 = confusion_matrix_values(lbls_0_2, pred_0_2)
true_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 0)
false_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 0)
true_no_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 1)
false_no_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 1)
true_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 0)
false_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 0)
true_no_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 1)
false_no_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 1)
true_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 0)
false_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 0)
true_no_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 1)
false_no_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 1)
tp_0 = np.sum(true_0_1).astype(np.float64)
tp_1 = np.sum(true_1_2).astype(np.float64)
tp_2 = np.sum(true_0_2).astype(np.float64)
tn_0 = np.sum(true_no_0_1).astype(np.float64)
tn_1 = np.sum(true_no_1_2).astype(np.float64)
tn_2 = np.sum(true_no_0_2).astype(np.float64)
fp_0 = np.sum(false_0_1).astype(np.float64)
fp_1 = np.sum(false_1_2).astype(np.float64)
fp_2 = np.sum(false_0_2).astype(np.float64)
fn_0 = np.sum(false_no_0_1).astype(np.float64)
fn_1 = np.sum(false_no_1_2).astype(np.float64)
fn_2 = np.sum(false_no_0_2).astype(np.float64)
recall_0 = tp_0 / (tp_0 + fn_0)
recall_1 = tp_1 / (tp_1 + fn_1)
recall_2 = tp_2 / (tp_2 + fn_2)
precision_0 = tp_0 / (tp_0 + fp_0)
precision_1 = tp_1 / (tp_1 + fp_1)
precision_2 = tp_2 / (tp_2 + fp_2)
mcc_0 = ((tp_0 * tn_0) - (fp_0 * fn_0)) / np.sqrt((tp_0 + fp_0) * (tp_0 + fn_0) * (tn_0 + fp_0) * (tn_0 + fn_0))
mcc_1 = ((tp_1 * tn_1) - (fp_1 * fn_1)) / np.sqrt((tp_1 + fp_1) * (tp_1 + fn_1) * (tn_1 + fp_1) * (tn_1 + fn_1))
mcc_2 = ((tp_2 * tn_2) - (fp_2 * fn_2)) / np.sqrt((tp_2 + fp_2) * (tp_2 + fn_2) * (tn_2 + fp_2) * (tn_2 + fn_2))
acc_0 = np.sum(lbls_0_1 == pred_0_1)/pred_0_1.size
acc_1 = np.sum(lbls_1_2 == pred_1_2)/pred_1_2.size
acc_2 = np.sum(lbls_0_2 == pred_0_2)/pred_0_2.size
print(acc_0, recall_0, precision_0, mcc_0)
print(acc_1, recall_1, precision_1, mcc_1)
print(acc_2, recall_2, precision_2, mcc_2)
return cm_0_1, cm_1_2, cm_0_2, [acc_0, acc_1, acc_2], [recall_0, recall_1, recall_2],\
[precision_0, precision_1, precision_2], [mcc_0, mcc_1, mcc_2]
def analyze_5cat(file):
tup = np.load(file, allow_pickle=True)
lbls = tup[0]
pred = tup[1]
lbls = lbls.flatten()
pred = pred.flatten()
np.histogram(lbls, bins=5)
np.histogram(pred, bins=5)
new_lbls = np.zeros(lbls.size, dtype=np.int32)
new_pred = np.zeros(pred.size, dtype=np.int32)
new_lbls[lbls == 0] = 0
new_lbls[lbls == 1] = 1
new_lbls[lbls == 2] = 1
new_lbls[lbls == 3] = 1
new_lbls[lbls == 4] = 2
new_pred[pred == 0] = 0
new_pred[pred == 1] = 1
new_pred[pred == 2] = 1
new_pred[pred == 3] = 1
new_pred[pred == 4] = 2
np.histogram(new_lbls, bins=3)
np.histogram(new_pred, bins=3)
lbls = new_lbls
pred = new_pred
print(np.sum(lbls == 0), np.sum(lbls == 1), np.sum(lbls == 2))
msk_0_1 = lbls != 2
msk_1_2 = lbls != 0
msk_0_2 = lbls != 1
lbls_0_1 = lbls[msk_0_1]
pred_0_1 = pred[msk_0_1]
pred_0_1 = np.where(pred_0_1 == 2, 1, pred_0_1)
# ----------------------------------------------
lbls_1_2 = lbls[msk_1_2]
lbls_1_2 = np.where(lbls_1_2 == 1, 0, lbls_1_2)
lbls_1_2 = np.where(lbls_1_2 == 2, 1, lbls_1_2)
pred_1_2 = pred[msk_1_2]
pred_1_2 = np.where(pred_1_2 == 0, -9, pred_1_2)
pred_1_2 = np.where(pred_1_2 == 1, 0, pred_1_2)
pred_1_2 = np.where(pred_1_2 == 2, 1, pred_1_2)
pred_1_2 = np.where(pred_1_2 == -9, 1, pred_1_2)
# -----------------------------------------------
lbls_0_2 = lbls[msk_0_2]
lbls_0_2 = np.where(lbls_0_2 == 2, 1, lbls_0_2)
pred_0_2 = pred[msk_0_2]
pred_0_2 = np.where(pred_0_2 == 2, 1, pred_0_2)
cm_0_1 = confusion_matrix_values(lbls_0_1, pred_0_1)
cm_1_2 = confusion_matrix_values(lbls_1_2, pred_1_2)
cm_0_2 = confusion_matrix_values(lbls_0_2, pred_0_2)
true_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 0)
false_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 0)
true_no_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 1)
false_no_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 1)
true_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 0)
false_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 0)
true_no_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 1)
false_no_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 1)
true_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 0)
false_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 0)
true_no_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 1)
false_no_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 1)
tp_0 = np.sum(true_0_1).astype(np.float64)
tp_1 = np.sum(true_1_2).astype(np.float64)
tp_2 = np.sum(true_0_2).astype(np.float64)
tn_0 = np.sum(true_no_0_1).astype(np.float64)
tn_1 = np.sum(true_no_1_2).astype(np.float64)
tn_2 = np.sum(true_no_0_2).astype(np.float64)
fp_0 = np.sum(false_0_1).astype(np.float64)
fp_1 = np.sum(false_1_2).astype(np.float64)
fp_2 = np.sum(false_0_2).astype(np.float64)
fn_0 = np.sum(false_no_0_1).astype(np.float64)
fn_1 = np.sum(false_no_1_2).astype(np.float64)
fn_2 = np.sum(false_no_0_2).astype(np.float64)
recall_0 = tp_0 / (tp_0 + fn_0)
recall_1 = tp_1 / (tp_1 + fn_1)
recall_2 = tp_2 / (tp_2 + fn_2)
precision_0 = tp_0 / (tp_0 + fp_0)
precision_1 = tp_1 / (tp_1 + fp_1)
precision_2 = tp_2 / (tp_2 + fp_2)
mcc_0 = ((tp_0 * tn_0) - (fp_0 * fn_0)) / np.sqrt((tp_0 + fp_0) * (tp_0 + fn_0) * (tn_0 + fp_0) * (tn_0 + fn_0))
mcc_1 = ((tp_1 * tn_1) - (fp_1 * fn_1)) / np.sqrt((tp_1 + fp_1) * (tp_1 + fn_1) * (tn_1 + fp_1) * (tn_1 + fn_1))
mcc_2 = ((tp_2 * tn_2) - (fp_2 * fn_2)) / np.sqrt((tp_2 + fp_2) * (tp_2 + fn_2) * (tn_2 + fp_2) * (tn_2 + fn_2))
acc_0 = np.sum(lbls_0_1 == pred_0_1)/pred_0_1.size
acc_1 = np.sum(lbls_1_2 == pred_1_2)/pred_1_2.size
acc_2 = np.sum(lbls_0_2 == pred_0_2)/pred_0_2.size
print(acc_0, recall_0, precision_0, mcc_0)
print(acc_1, recall_1, precision_1, mcc_1)
print(acc_2, recall_2, precision_2, mcc_2)
return cm_0_1, cm_1_2, cm_0_2, [acc_0, acc_1, acc_2], [recall_0, recall_1, recall_2],\
[precision_0, precision_1, precision_2], [mcc_0, mcc_1, mcc_2], lbls, pred
if __name__ == "__main__":
nn = SRCNN()
nn.run('matchup_filename')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment