From babdb6073f06906b08c5a2cc4305fee8af8b0edf Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Mon, 17 Apr 2023 13:26:24 -0500 Subject: [PATCH] initial commit... --- .../deeplearning/cloud_fraction_fcn_abi.py | 1066 +++++++++++++++++ 1 file changed, 1066 insertions(+) create mode 100644 modules/deeplearning/cloud_fraction_fcn_abi.py diff --git a/modules/deeplearning/cloud_fraction_fcn_abi.py b/modules/deeplearning/cloud_fraction_fcn_abi.py new file mode 100644 index 00000000..28f76db1 --- /dev/null +++ b/modules/deeplearning/cloud_fraction_fcn_abi.py @@ -0,0 +1,1066 @@ +import glob +import tensorflow as tf + +from util.plot_cm import confusion_matrix_values +from util.setup import logdir, modeldir, now, ancillary_path +from util.util import EarlyStop, normalize, denormalize, get_grid_values_all +import os, datetime +import numpy as np +import pickle +import h5py +import xarray as xr +import gc + +AUTOTUNE = tf.data.AUTOTUNE + +LOG_DEVICE_PLACEMENT = False + +PROC_BATCH_SIZE = 4 +PROC_BATCH_BUFFER_SIZE = 5000 + +NumClasses = 5 +if NumClasses == 2: + NumLogits = 1 +else: + NumLogits = NumClasses + +BATCH_SIZE = 128 +NUM_EPOCHS = 80 + +TRACK_MOVING_AVERAGE = False +EARLY_STOP = True + +NOISE_TRAINING = False +NOISE_STDDEV = 0.01 +DO_AUGMENT = False + +DO_SMOOTH = False +SIGMA = 1.0 +DO_ZERO_OUT = False + +# setup scaling parameters dictionary +mean_std_dct = {} +mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl' +f = open(mean_std_file, 'rb') +mean_std_dct_l2 = pickle.load(f) +f.close() + +mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl' +f = open(mean_std_file, 'rb') +mean_std_dct_l1b = pickle.load(f) +f.close() + +mean_std_dct.update(mean_std_dct_l1b) +mean_std_dct.update(mean_std_dct_l2) + +IMG_DEPTH = 1 + +label_param = 'cloud_probability' + +params = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param] +params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param] +data_params_half = ['temp_11_0um_nom'] +data_params_full = ['refl_0_65um_nom'] + +label_idx_i = params_i.index(label_param) +label_idx = params.index(label_param) + +print('data_params_half: ', data_params_half) +print('data_params_full: ', data_params_full) +print('label_param: ', label_param) + +KERNEL_SIZE = 3 # target size: (128, 128) +N_X = N_Y = 1 +X_LEN = Y_LEN = 128 + +if KERNEL_SIZE == 3: + slc_x = slice(1, int((N_X*X_LEN)/2) + 3) + slc_y = slice(1, int((N_Y*Y_LEN)/2) + 3) + x_128 = slice(4, N_X*X_LEN + 4) + y_128 = slice(4, N_Y*Y_LEN + 4) +# elif KERNEL_SIZE == 5: These no longer apply here +# slc_x = slice(3, 135) +# slc_y = slice(3, 135) +# slc_x_2 = slice(2, 137, 2) +# slc_y_2 = slice(2, 137, 2) +# x_128 = slice(5, 133) +# y_128 = slice(5, 133) +# t = np.arange(1, 67, 0.5) +# s = np.arange(1, 67, 0.5) +# x_2 = np.arange(68) +# y_2 = np.arange(68) +# ---------------------------------------- + + +def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME', + kernel_initializer='he_uniform', scale=None, kernel_size=3, + do_drop_out=True, drop_rate=0.5, do_batch_norm=True): + + with tf.name_scope(block_name): + skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv) + skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, activation=None)(skip) + + if scale is not None: + skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip) + + if do_drop_out: + skip = tf.keras.layers.Dropout(drop_rate)(skip) + + if do_batch_norm: + skip = tf.keras.layers.BatchNormalization()(skip) + + conv = conv + skip + print(block_name+':', conv.shape) + + return conv + + +def upsample_mean(grd): + bsize, ylen, xlen = grd.shape + up = np.zeros((bsize, ylen*2, xlen*2)) + + up[:, ::2, ::2] = grd[:, ::2, ::2] + up[:, 1::2, ::2] = grd[:, ::2, ::2] + up[:, ::2, 1::2] = grd[:, ::2, ::2] + up[:, 1::2, 1::2] = grd[:, ::2, ::2] + + return up + + +def get_grid_cell_mean(grd_k): + grd_k = np.where(np.isnan(grd_k), 0, grd_k) + a = grd_k[:, 0::2, 0::2] + b = grd_k[:, 1::2, 0::2] + c = grd_k[:, 0::2, 1::2] + d = grd_k[:, 1::2, 1::2] + mean = np.nanmean([a, b, c, d], axis=0) + + return mean + + +def get_min_max_std(grd_k): + grd_k = np.where(np.isnan(grd_k), 0, grd_k) + a = grd_k[:, 0::2, 0::2] + b = grd_k[:, 1::2, 0::2] + c = grd_k[:, 0::2, 1::2] + d = grd_k[:, 1::2, 1::2] + + lo = np.nanmin([a, b, c, d], axis=0) + hi = np.nanmax([a, b, c, d], axis=0) + std = np.nanstd([a, b, c, d], axis=0) + avg = np.nanmean([a, b, c, d], axis=0) + + return lo, hi, std, avg + + +def get_label_data(grd_k): + grd_k = np.where(np.isnan(grd_k), 0, grd_k) + grd_k = np.where(grd_k < 0.50, 0, 1) + + a = grd_k[:, 0::2, 0::2] + b = grd_k[:, 1::2, 0::2] + c = grd_k[:, 0::2, 1::2] + d = grd_k[:, 1::2, 1::2] + s = a + b + c + d + + cat_0 = (s == 0) + cat_1 = np.logical_and(s > 0, s < 4) + cat_2 = (s == 4) + s[cat_0] = 0 + s[cat_1] = 1 + s[cat_2] = 2 + + return s + + +def get_label_data_5cat(grd_k): + grd_k = np.where(np.isnan(grd_k), 0, grd_k) + # grd_u = np.where(np.logical_and(grd_k > 0.45, grd_k < 0.55), 1, 0) + grd_k = np.where(grd_k < 0.5, 0, 1) + + a = grd_k[:, 0::2, 0::2] + b = grd_k[:, 1::2, 0::2] + c = grd_k[:, 0::2, 1::2] + d = grd_k[:, 1::2, 1::2] + s = a + b + c + d + + cat_0 = (s == 0) + cat_1 = (s == 1) + cat_2 = (s == 2) + cat_3 = (s == 3) + cat_4 = (s == 4) + + s[cat_0] = 0 + s[cat_1] = 1 + s[cat_2] = 2 + s[cat_3] = 3 + s[cat_4] = 4 + + # a = grd_u[:, 0::2, 0::2] + # b = grd_u[:, 1::2, 0::2] + # c = grd_u[:, 0::2, 1::2] + # d = grd_u[:, 1::2, 1::2] + # s_u = a + b + c + d + # cat_u = (s_u == 4) + # s[cat_u] = 5 + + return s + + +class SRCNN: + + def __init__(self): + + self.train_data = None + self.train_label = None + self.test_data = None + self.test_label = None + self.test_data_denorm = None + + self.train_dataset = None + self.inner_train_dataset = None + self.test_dataset = None + self.eval_dataset = None + self.X_img = None + self.X_prof = None + self.X_u = None + self.X_v = None + self.X_sfc = None + self.inputs = [] + self.y = None + self.handle = None + self.inner_handle = None + self.in_mem_batch = None + + self.h5f_l1b_trn = None + self.h5f_l1b_tst = None + self.h5f_l2_trn = None + self.h5f_l2_tst = None + + self.logits = None + + self.predict_data = None + self.predict_dataset = None + self.mean_list = None + self.std_list = None + + self.training_op = None + self.correct = None + self.accuracy = None + self.loss = None + self.pred_class = None + self.variable_averages = None + + self.global_step = None + + self.writer_train = None + self.writer_valid = None + self.writer_train_valid_loss = None + + self.OUT_OF_RANGE = False + + self.model = None + self.optimizer = None + self.ema = None + self.train_loss = None + self.train_accuracy = None + self.test_loss = None + self.test_accuracy = None + self.test_auc = None + self.test_recall = None + self.test_precision = None + self.test_confusion_matrix = None + self.test_true_pos = None + self.test_true_neg = None + self.test_false_pos = None + self.test_false_neg = None + + self.test_labels = [] + self.test_preds = [] + self.test_probs = None + + self.learningRateSchedule = None + self.num_data_samples = None + self.initial_learning_rate = None + + self.data_dct = None + self.train_data_files = None + self.train_label_files = None + self.test_data_files = None + self.test_label_files = None + + # self.n_chans = len(data_params_half) + len(data_params_full) + 1 + self.n_chans = 5 + + self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) + + self.inputs.append(self.X_img) + + tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) + + def get_in_mem_data_batch(self, idxs, is_training): + if is_training: + data_files = self.train_data_files + label_files = self.train_label_files + else: + data_files = self.test_data_files + label_files = self.test_label_files + + data_s = [] + label_s = [] + for k in idxs: + f = data_files[k] + nda = np.load(f) + data_s.append(nda) + + f = label_files[k] + nda = np.load(f) + label_s.append(nda) + input_data = np.concatenate(data_s) + input_label = np.concatenate(label_s) + + data_norm = [] + for param in data_params_half: + # If next 2 uncommented, take out get_grid_cell_mean + # idx = params.index(param) + # tmp = input_data[:, idx, :, :] + idx = params_i.index(param) + tmp = input_label[:, idx, :, :] + tmp = get_grid_cell_mean(tmp) + tmp = tmp[:, slc_y, slc_x] + tmp = normalize(tmp, param, mean_std_dct) + data_norm.append(tmp) + + for param in data_params_full: + idx = params_i.index(param) + tmp = input_label[:, idx, :, :] + + lo, hi, std, avg = get_min_max_std(tmp) + lo = normalize(lo, param, mean_std_dct) + hi = normalize(hi, param, mean_std_dct) + avg = normalize(avg, param, mean_std_dct) + + data_norm.append(lo[:, slc_y, slc_x]) + data_norm.append(hi[:, slc_y, slc_x]) + data_norm.append(avg[:, slc_y, slc_x]) + # --------------------------------------------------- + # If next uncommented, take out get_grid_cell_mean + # tmp = input_data[:, label_idx, :, :] + tmp = input_label[:, label_idx_i, :, :] + tmp = get_grid_cell_mean(tmp) + tmp = tmp[:, slc_y, slc_x] + data_norm.append(tmp) + # --------- + data = np.stack(data_norm, axis=3) + data = data.astype(np.float32) + + # ----------------------------------------------------- + # ----------------------------------------------------- + label = input_label[:, label_idx_i, :, :] + label = label[:, y_128, x_128] + if NumClasses == 5: + label = get_label_data_5cat(label) + else: + label = get_label_data(label) + + label = np.where(np.isnan(label), 0, label) + label = np.expand_dims(label, axis=3) + + data = data.astype(np.float32) + label = label.astype(np.float32) + + if is_training and DO_AUGMENT: + data_ud = np.flip(data, axis=1) + label_ud = np.flip(label, axis=1) + + data_lr = np.flip(data, axis=2) + label_lr = np.flip(label, axis=2) + + data = np.concatenate([data, data_ud, data_lr]) + label = np.concatenate([label, label_ud, label_lr]) + + return data, label + + def get_in_mem_data_batch_train(self, idxs): + return self.get_in_mem_data_batch(idxs, True) + + def get_in_mem_data_batch_test(self, idxs): + return self.get_in_mem_data_batch(idxs, False) + + @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) + def data_function(self, indexes): + out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32]) + return out + + @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) + def data_function_test(self, indexes): + out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32]) + return out + + def get_train_dataset(self, indexes): + indexes = list(indexes) + + dataset = tf.data.Dataset.from_tensor_slices(indexes) + dataset = dataset.batch(PROC_BATCH_SIZE) + dataset = dataset.map(self.data_function, num_parallel_calls=AUTOTUNE) + dataset = dataset.cache() + if DO_AUGMENT: + dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE) + dataset = dataset.prefetch(buffer_size=AUTOTUNE) + self.train_dataset = dataset + + def get_test_dataset(self, indexes): + indexes = list(indexes) + + dataset = tf.data.Dataset.from_tensor_slices(indexes) + dataset = dataset.batch(PROC_BATCH_SIZE) + dataset = dataset.map(self.data_function_test, num_parallel_calls=AUTOTUNE) + dataset = dataset.cache() + self.test_dataset = dataset + + def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples): + self.train_data_files = train_data_files + self.train_label_files = train_label_files + self.test_data_files = test_data_files + self.test_label_files = test_label_files + + trn_idxs = np.arange(len(train_data_files)) + np.random.shuffle(trn_idxs) + + tst_idxs = np.arange(len(test_data_files)) + + self.get_train_dataset(trn_idxs) + self.get_test_dataset(tst_idxs) + + self.num_data_samples = num_train_samples # approximately + + print('datetime: ', now) + print('training and test data: ') + print('---------------------------') + print('num train samples: ', self.num_data_samples) + print('BATCH SIZE: ', BATCH_SIZE) + print('num test samples: ', tst_idxs.shape[0]) + print('setup_pipeline: Done') + + def setup_test_pipeline(self, test_data_files, test_label_files): + self.test_data_files = test_data_files + self.test_label_files = test_label_files + tst_idxs = np.arange(len(test_data_files)) + self.get_test_dataset(tst_idxs) + print('setup_test_pipeline: Done') + + def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2): + print('build_cnn') + padding = "SAME" + + # activation = tf.nn.relu + # activation = tf.nn.elu + activation = tf.nn.relu + momentum = 0.99 + + num_filters = 64 + + input_2d = self.inputs[0] + print('input: ', input_2d.shape) + + conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=KERNEL_SIZE, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d) + print(conv.shape) + + # if NOISE_TRAINING: + # conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv) + + scale = 0.2 + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', kernel_size=KERNEL_SIZE, scale=scale) + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', kernel_size=KERNEL_SIZE, scale=scale) + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', kernel_size=KERNEL_SIZE, scale=scale) + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', kernel_size=KERNEL_SIZE, scale=scale) + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', kernel_size=KERNEL_SIZE, scale=scale) + + conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_6', kernel_size=KERNEL_SIZE, scale=scale) + + conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b) + + # conv = conv + conv_b + conv = conv_b + print(conv.shape) + + if NumClasses == 2: + final_activation = tf.nn.sigmoid # For binary + else: + final_activation = tf.nn.softmax # For multi-class + + # This is effectively a Dense layer + self.logits = tf.keras.layers.Conv2D(NumLogits, kernel_size=1, strides=1, padding=padding, activation=final_activation)(conv) + print(self.logits.shape) + + def build_training(self): + if NumClasses == 2: + self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only + else: + self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) # For multi-class + # self.loss = tf.keras.losses.MeanAbsoluteError() # Regression + + # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) + initial_learning_rate = 0.002 + decay_rate = 0.95 + steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch + decay_steps = int(steps_per_epoch) * 4 + print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps) + + self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate) + + optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule) + + if TRACK_MOVING_AVERAGE: + # Not sure that this works properly (from tfa) + # optimizer = tfa.optimizers.MovingAverage(optimizer) + self.ema = tf.train.ExponentialMovingAverage(decay=0.9999) + + self.optimizer = optimizer + self.initial_learning_rate = initial_learning_rate + + def build_evaluation(self): + self.train_loss = tf.keras.metrics.Mean(name='train_loss') + self.test_loss = tf.keras.metrics.Mean(name='test_loss') + + if NumClasses == 2: + self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy') + self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy') + self.test_auc = tf.keras.metrics.AUC(name='test_auc') + self.test_recall = tf.keras.metrics.Recall(name='test_recall') + self.test_precision = tf.keras.metrics.Precision(name='test_precision') + self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg') + self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos') + self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg') + self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos') + else: + self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') + self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') + + @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) + def train_step(self, inputs, labels): + labels = tf.squeeze(labels, axis=[3]) + with tf.GradientTape() as tape: + pred = self.model([inputs], training=True) + loss = self.loss(labels, pred) + total_loss = loss + if len(self.model.losses) > 0: + reg_loss = tf.math.add_n(self.model.losses) + total_loss = loss + reg_loss + gradients = tape.gradient(total_loss, self.model.trainable_variables) + self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) + if TRACK_MOVING_AVERAGE: + self.ema.apply(self.model.trainable_variables) + + self.train_loss(loss) + self.train_accuracy(labels, pred) + + return loss + + @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) + def test_step(self, inputs, labels): + labels = tf.squeeze(labels, axis=[3]) + pred = self.model([inputs], training=False) + t_loss = self.loss(labels, pred) + + self.test_loss(t_loss) + self.test_accuracy(labels, pred) + + # @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)]) + # decorator commented out because pred.numpy(): pred not evaluated yet. + def predict(self, inputs, labels): + pred = self.model([inputs], training=False) + # t_loss = self.loss(tf.squeeze(labels, axis=[3]), pred) + t_loss = self.loss(labels, pred) + + self.test_labels.append(labels) + self.test_preds.append(pred.numpy()) + + self.test_loss(t_loss) + self.test_accuracy(labels, pred) + + def reset_test_metrics(self): + self.test_loss.reset_states() + self.test_accuracy.reset_states() + + def get_metrics(self): + recall = self.test_recall.result() + precsn = self.test_precision.result() + f1 = 2 * (precsn * recall) / (precsn + recall) + + tn = self.test_true_neg.result() + tp = self.test_true_pos.result() + fn = self.test_false_neg.result() + fp = self.test_false_pos.result() + + mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) + return f1, mcc + + def do_training(self, ckpt_dir=None): + + if ckpt_dir is None: + if not os.path.exists(modeldir): + os.mkdir(modeldir) + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3) + else: + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + ckpt.restore(ckpt_manager.latest_checkpoint) + + self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train')) + self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid')) + self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss')) + + step = 0 + total_time = 0 + best_test_loss = np.finfo(dtype=np.float).max + + if EARLY_STOP: + es = EarlyStop() + + for epoch in range(NUM_EPOCHS): + self.train_loss.reset_states() + self.train_accuracy.reset_states() + + t0 = datetime.datetime.now().timestamp() + + proc_batch_cnt = 0 + n_samples = 0 + + for data, label in self.train_dataset: + trn_ds = tf.data.Dataset.from_tensor_slices((data, label)) + trn_ds = trn_ds.batch(BATCH_SIZE) + for mini_batch in trn_ds: + if self.learningRateSchedule is not None: + loss = self.train_step(mini_batch[0], mini_batch[1]) + + if (step % 100) == 0: + + with self.writer_train.as_default(): + tf.summary.scalar('loss_trn', loss.numpy(), step=step) + tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step) + tf.summary.scalar('num_train_steps', step, step=step) + tf.summary.scalar('num_epochs', epoch, step=step) + + self.reset_test_metrics() + for data_tst, label_tst in self.test_dataset: + tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst)) + tst_ds = tst_ds.batch(BATCH_SIZE) + for mini_batch_test in tst_ds: + self.test_step(mini_batch_test[0], mini_batch_test[1]) + + with self.writer_valid.as_default(): + tf.summary.scalar('loss_val', self.test_loss.result(), step=step) + tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) + + with self.writer_train_valid_loss.as_default(): + tf.summary.scalar('loss_trn', loss.numpy(), step=step) + tf.summary.scalar('loss_val', self.test_loss.result(), step=step) + + print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), + self.optimizer._decayed_lr('float32').numpy()) + + step += 1 + print('train loss: ', loss.numpy()) + + proc_batch_cnt += 1 + n_samples += data.shape[0] + print('proc_batch_cnt: ', proc_batch_cnt, n_samples) + + t1 = datetime.datetime.now().timestamp() + print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0)) + total_time += (t1-t0) + + self.reset_test_metrics() + for data, label in self.test_dataset: + ds = tf.data.Dataset.from_tensor_slices((data, label)) + ds = ds.batch(BATCH_SIZE) + for mini_batch in ds: + self.test_step(mini_batch[0], mini_batch[1]) + + print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) + print('------------------------------------------------------') + + tst_loss = self.test_loss.result().numpy() + if tst_loss < best_test_loss: + best_test_loss = tst_loss + ckpt_manager.save() + + if EARLY_STOP and es.check_stop(tst_loss): + break + + print('total time: ', total_time) + self.writer_train.close() + self.writer_valid.close() + self.writer_train_valid_loss.close() + + def build_model(self): + self.build_srcnn() + self.model = tf.keras.Model(self.inputs, self.logits) + + def restore(self, ckpt_dir): + + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + ckpt.restore(ckpt_manager.latest_checkpoint) + + self.reset_test_metrics() + + for data, label in self.test_dataset: + ds = tf.data.Dataset.from_tensor_slices((data, label)) + ds = ds.batch(BATCH_SIZE) + for mini_batch_test in ds: + self.predict(mini_batch_test[0], mini_batch_test[1]) + + print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) + + labels = np.concatenate(self.test_labels) + preds = np.concatenate(self.test_preds) + print(labels.shape, preds.shape) + + return labels, preds + + def do_evaluate(self, inputs, ckpt_dir): + + ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model) + ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3) + ckpt.restore(ckpt_manager.latest_checkpoint) + + self.reset_test_metrics() + + pred = self.model([inputs], training=False) + self.test_probs = pred + pred = pred.numpy() + + return pred + + def run(self, directory, ckpt_dir=None, num_data_samples=50000): + train_data_files = glob.glob(directory+'train*mres*.npy') + valid_data_files = glob.glob(directory+'valid*mres*.npy') + train_label_files = glob.glob(directory+'train*ires*.npy') + valid_label_files = glob.glob(directory+'valid*ires*.npy') + self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples) + + self.build_model() + self.build_training() + self.build_evaluation() + self.do_training(ckpt_dir=ckpt_dir) + + def run_restore(self, directory, ckpt_dir): + self.num_data_samples = 1000 + + valid_data_files = glob.glob(directory + 'valid*mres*.npy') + valid_label_files = glob.glob(directory + 'valid*ires*.npy') + self.setup_test_pipeline(valid_data_files, valid_label_files) + + self.build_model() + self.build_training() + self.build_evaluation() + return self.restore(ckpt_dir) + + def run_evaluate(self, data, ckpt_dir): + # data = tf.convert_to_tensor(data, dtype=tf.float32) + self.num_data_samples = 80000 + self.build_model() + self.build_training() + self.build_evaluation() + return self.do_evaluate(data, ckpt_dir) + + +def run_restore_static(directory, ckpt_dir, out_file=None): + nn = SRCNN() + labels, preds = nn.run_restore(directory, ckpt_dir) + if out_file is not None: + np.save(out_file, + [np.squeeze(labels), preds.argmax(axis=3)]) + + +def run_evaluate_static(in_file, out_file, ckpt_dir): + gc.collect() + + h5f = h5py.File(in_file, 'r') + + bt = get_grid_values_all(h5f, 'orig/temp_11_0um') + y_len, x_len = bt.shape[0], bt.shape[1] + lons = get_grid_values_all(h5f, 'orig/longitude') + lats = get_grid_values_all(h5f, 'orig/latitude') + bt = np.where(np.isnan(bt), 0, bt) + bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct) + + refl = get_grid_values_all(h5f, 'super/refl_0_65um') + refl = np.where(np.isnan(refl), 0, refl) + refl = np.expand_dims(refl, axis=0) + refl_lo, refl_hi, refl_std, refl_avg = get_min_max_std(refl) + refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct) + refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct) + refl_avg = normalize(refl_avg, 'refl_0_65um_nom', mean_std_dct) + refl_lo = np.squeeze(refl_lo) + refl_hi = np.squeeze(refl_hi) + refl_avg = np.squeeze(refl_avg) + + cp = get_grid_values_all(h5f, 'orig/'+label_param) + cp = np.where(np.isnan(cp), 0, cp) + + data = np.stack([bt, refl_lo, refl_hi, refl_avg, cp], axis=2) + data = np.expand_dims(data, axis=0) + + h5f.close() + + nn = SRCNN() + probs = nn.run_evaluate(data, ckpt_dir) + cld_frac = probs.argmax(axis=3) + cld_frac = cld_frac.astype(np.int8) + cld_frac_out = np.zeros((y_len, x_len), dtype=np.int8) + border = int((KERNEL_SIZE - 1)/2) + cld_frac_out[border:y_len - border, border:x_len - border] = cld_frac[0, :, :] + + bt = denormalize(bt, 'temp_11_0um_nom', mean_std_dct) + refl_avg = denormalize(refl_avg, 'refl_0_65um_nom', mean_std_dct) + + var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um'] + dims = ['num_params', 'y', 'x'] + + da = xr.DataArray(np.stack([cld_frac_out, bt, refl_avg], axis=0), dims=dims) + da.assign_coords({ + 'num_params': var_names, + 'lat': (['y', 'x'], lats), + 'lon': (['y', 'x'], lons) + }) + + if out_file is not None: + np.save(out_file, (cld_frac_out, bt, refl_avg, cp, lons, lats)) + else: + return [cld_frac_out, bt, refl_avg, cp, lons, lats] + + +def analyze_3cat(file): + + tup = np.load(file, allow_pickle=True) + lbls = tup[0] + pred = tup[1] + + lbls = lbls.flatten() + pred = pred.flatten() + print(np.sum(lbls == 0), np.sum(lbls == 1), np.sum(lbls == 2)) + + msk_0_1 = lbls != 2 + msk_1_2 = lbls != 0 + msk_0_2 = lbls != 1 + + lbls_0_1 = lbls[msk_0_1] + + pred_0_1 = pred[msk_0_1] + pred_0_1 = np.where(pred_0_1 == 2, 1, pred_0_1) + + # ---- + lbls_1_2 = lbls[msk_1_2] + lbls_1_2 = np.where(lbls_1_2 == 1, 0, lbls_1_2) + lbls_1_2 = np.where(lbls_1_2 == 2, 1, lbls_1_2) + + pred_1_2 = pred[msk_1_2] + pred_1_2 = np.where(pred_1_2 == 0, -9, pred_1_2) + pred_1_2 = np.where(pred_1_2 == 1, 0, pred_1_2) + pred_1_2 = np.where(pred_1_2 == 2, 1, pred_1_2) + pred_1_2 = np.where(pred_1_2 == -9, 1, pred_1_2) + + # ---- + lbls_0_2 = lbls[msk_0_2] + lbls_0_2 = np.where(lbls_0_2 == 2, 1, lbls_0_2) + + pred_0_2 = pred[msk_0_2] + pred_0_2 = np.where(pred_0_2 == 2, 1, pred_0_2) + + cm_0_1 = confusion_matrix_values(lbls_0_1, pred_0_1) + cm_1_2 = confusion_matrix_values(lbls_1_2, pred_1_2) + cm_0_2 = confusion_matrix_values(lbls_0_2, pred_0_2) + + true_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 0) + false_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 0) + + true_no_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 1) + false_no_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 1) + + true_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 0) + false_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 0) + + true_no_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 1) + false_no_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 1) + + true_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 0) + false_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 0) + + true_no_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 1) + false_no_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 1) + + tp_0 = np.sum(true_0_1).astype(np.float64) + tp_1 = np.sum(true_1_2).astype(np.float64) + tp_2 = np.sum(true_0_2).astype(np.float64) + + tn_0 = np.sum(true_no_0_1).astype(np.float64) + tn_1 = np.sum(true_no_1_2).astype(np.float64) + tn_2 = np.sum(true_no_0_2).astype(np.float64) + + fp_0 = np.sum(false_0_1).astype(np.float64) + fp_1 = np.sum(false_1_2).astype(np.float64) + fp_2 = np.sum(false_0_2).astype(np.float64) + + fn_0 = np.sum(false_no_0_1).astype(np.float64) + fn_1 = np.sum(false_no_1_2).astype(np.float64) + fn_2 = np.sum(false_no_0_2).astype(np.float64) + + recall_0 = tp_0 / (tp_0 + fn_0) + recall_1 = tp_1 / (tp_1 + fn_1) + recall_2 = tp_2 / (tp_2 + fn_2) + + precision_0 = tp_0 / (tp_0 + fp_0) + precision_1 = tp_1 / (tp_1 + fp_1) + precision_2 = tp_2 / (tp_2 + fp_2) + + mcc_0 = ((tp_0 * tn_0) - (fp_0 * fn_0)) / np.sqrt((tp_0 + fp_0) * (tp_0 + fn_0) * (tn_0 + fp_0) * (tn_0 + fn_0)) + mcc_1 = ((tp_1 * tn_1) - (fp_1 * fn_1)) / np.sqrt((tp_1 + fp_1) * (tp_1 + fn_1) * (tn_1 + fp_1) * (tn_1 + fn_1)) + mcc_2 = ((tp_2 * tn_2) - (fp_2 * fn_2)) / np.sqrt((tp_2 + fp_2) * (tp_2 + fn_2) * (tn_2 + fp_2) * (tn_2 + fn_2)) + + acc_0 = np.sum(lbls_0_1 == pred_0_1)/pred_0_1.size + acc_1 = np.sum(lbls_1_2 == pred_1_2)/pred_1_2.size + acc_2 = np.sum(lbls_0_2 == pred_0_2)/pred_0_2.size + + print(acc_0, recall_0, precision_0, mcc_0) + print(acc_1, recall_1, precision_1, mcc_1) + print(acc_2, recall_2, precision_2, mcc_2) + + return cm_0_1, cm_1_2, cm_0_2, [acc_0, acc_1, acc_2], [recall_0, recall_1, recall_2],\ + [precision_0, precision_1, precision_2], [mcc_0, mcc_1, mcc_2] + + +def analyze_5cat(file): + + tup = np.load(file, allow_pickle=True) + lbls = tup[0] + pred = tup[1] + + lbls = lbls.flatten() + pred = pred.flatten() + np.histogram(lbls, bins=5) + np.histogram(pred, bins=5) + + new_lbls = np.zeros(lbls.size, dtype=np.int32) + new_pred = np.zeros(pred.size, dtype=np.int32) + + new_lbls[lbls == 0] = 0 + new_lbls[lbls == 1] = 1 + new_lbls[lbls == 2] = 1 + new_lbls[lbls == 3] = 1 + new_lbls[lbls == 4] = 2 + + new_pred[pred == 0] = 0 + new_pred[pred == 1] = 1 + new_pred[pred == 2] = 1 + new_pred[pred == 3] = 1 + new_pred[pred == 4] = 2 + + np.histogram(new_lbls, bins=3) + np.histogram(new_pred, bins=3) + + lbls = new_lbls + pred = new_pred + + print(np.sum(lbls == 0), np.sum(lbls == 1), np.sum(lbls == 2)) + + msk_0_1 = lbls != 2 + msk_1_2 = lbls != 0 + msk_0_2 = lbls != 1 + + lbls_0_1 = lbls[msk_0_1] + + pred_0_1 = pred[msk_0_1] + pred_0_1 = np.where(pred_0_1 == 2, 1, pred_0_1) + + # ---------------------------------------------- + lbls_1_2 = lbls[msk_1_2] + lbls_1_2 = np.where(lbls_1_2 == 1, 0, lbls_1_2) + lbls_1_2 = np.where(lbls_1_2 == 2, 1, lbls_1_2) + + pred_1_2 = pred[msk_1_2] + pred_1_2 = np.where(pred_1_2 == 0, -9, pred_1_2) + pred_1_2 = np.where(pred_1_2 == 1, 0, pred_1_2) + pred_1_2 = np.where(pred_1_2 == 2, 1, pred_1_2) + pred_1_2 = np.where(pred_1_2 == -9, 1, pred_1_2) + + # ----------------------------------------------- + lbls_0_2 = lbls[msk_0_2] + lbls_0_2 = np.where(lbls_0_2 == 2, 1, lbls_0_2) + + pred_0_2 = pred[msk_0_2] + pred_0_2 = np.where(pred_0_2 == 2, 1, pred_0_2) + + cm_0_1 = confusion_matrix_values(lbls_0_1, pred_0_1) + cm_1_2 = confusion_matrix_values(lbls_1_2, pred_1_2) + cm_0_2 = confusion_matrix_values(lbls_0_2, pred_0_2) + + true_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 0) + false_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 0) + + true_no_0_1 = (lbls_0_1 == 1) & (pred_0_1 == 1) + false_no_0_1 = (lbls_0_1 == 0) & (pred_0_1 == 1) + + true_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 0) + false_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 0) + + true_no_0_2 = (lbls_0_2 == 1) & (pred_0_2 == 1) + false_no_0_2 = (lbls_0_2 == 0) & (pred_0_2 == 1) + + true_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 0) + false_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 0) + + true_no_1_2 = (lbls_1_2 == 1) & (pred_1_2 == 1) + false_no_1_2 = (lbls_1_2 == 0) & (pred_1_2 == 1) + + tp_0 = np.sum(true_0_1).astype(np.float64) + tp_1 = np.sum(true_1_2).astype(np.float64) + tp_2 = np.sum(true_0_2).astype(np.float64) + + tn_0 = np.sum(true_no_0_1).astype(np.float64) + tn_1 = np.sum(true_no_1_2).astype(np.float64) + tn_2 = np.sum(true_no_0_2).astype(np.float64) + + fp_0 = np.sum(false_0_1).astype(np.float64) + fp_1 = np.sum(false_1_2).astype(np.float64) + fp_2 = np.sum(false_0_2).astype(np.float64) + + fn_0 = np.sum(false_no_0_1).astype(np.float64) + fn_1 = np.sum(false_no_1_2).astype(np.float64) + fn_2 = np.sum(false_no_0_2).astype(np.float64) + + recall_0 = tp_0 / (tp_0 + fn_0) + recall_1 = tp_1 / (tp_1 + fn_1) + recall_2 = tp_2 / (tp_2 + fn_2) + + precision_0 = tp_0 / (tp_0 + fp_0) + precision_1 = tp_1 / (tp_1 + fp_1) + precision_2 = tp_2 / (tp_2 + fp_2) + + mcc_0 = ((tp_0 * tn_0) - (fp_0 * fn_0)) / np.sqrt((tp_0 + fp_0) * (tp_0 + fn_0) * (tn_0 + fp_0) * (tn_0 + fn_0)) + mcc_1 = ((tp_1 * tn_1) - (fp_1 * fn_1)) / np.sqrt((tp_1 + fp_1) * (tp_1 + fn_1) * (tn_1 + fp_1) * (tn_1 + fn_1)) + mcc_2 = ((tp_2 * tn_2) - (fp_2 * fn_2)) / np.sqrt((tp_2 + fp_2) * (tp_2 + fn_2) * (tn_2 + fp_2) * (tn_2 + fn_2)) + + acc_0 = np.sum(lbls_0_1 == pred_0_1)/pred_0_1.size + acc_1 = np.sum(lbls_1_2 == pred_1_2)/pred_1_2.size + acc_2 = np.sum(lbls_0_2 == pred_0_2)/pred_0_2.size + + print(acc_0, recall_0, precision_0, mcc_0) + print(acc_1, recall_1, precision_1, mcc_1) + print(acc_2, recall_2, precision_2, mcc_2) + + return cm_0_1, cm_1_2, cm_0_2, [acc_0, acc_1, acc_2], [recall_0, recall_1, recall_2],\ + [precision_0, precision_1, precision_2], [mcc_0, mcc_1, mcc_2], lbls, pred + + +if __name__ == "__main__": + nn = SRCNN() + nn.run('matchup_filename') -- GitLab