Skip to content
Snippets Groups Projects
Commit b9144861 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 1037a6f5
No related branches found
No related tags found
No related merge requests found
...@@ -178,22 +178,28 @@ class IcingIntensityNN: ...@@ -178,22 +178,28 @@ class IcingIntensityNN:
# Memory growth must be set before GPUs have been initialized # Memory growth must be set before GPUs have been initialized
print(e) print(e)
def get_in_mem_data_batch(self, keys): def get_in_mem_data_batch(self, idxs):
key = set(idxs)
if CACHE_DATA_IN_MEM:
data, label = self.in_mem_data_cache.get(key)
if data is not None:
return data, label
# sort these to use as numpy indexing arrays # sort these to use as numpy indexing arrays
nd_keys = np.array(keys) nd_idxs = np.array(idxs)
nd_keys = np.sort(nd_keys) nd_idxs = np.sort(nd_idxs)
data = [] data = []
for param in train_params: for param in train_params:
nda = self.h5f[param][nd_keys, ] nda = self.h5f[param][nd_idxs, ]
nda = normalize(nda, param, mean_std_dct) nda = normalize(nda, param, mean_std_dct)
data.append(nda) data.append(nda)
data = np.stack(data) data = np.stack(data)
data = data.astype(np.float32) data = data.astype(np.float32)
data = np.transpose(data, axes=(1, 0)) data = np.transpose(data, axes=(1, 0))
label = self.h5f['icing_intensity'][nd_keys] label = self.h5f['icing_intensity'][nd_idxs]
label = label.astype(np.int32) label = label.astype(np.int32)
label = np.where(label == -1, 0, label) label = np.where(label == -1, 0, label)
...@@ -201,18 +207,8 @@ class IcingIntensityNN: ...@@ -201,18 +207,8 @@ class IcingIntensityNN:
label = np.where(label != 0, 1, label) label = np.where(label != 0, 1, label)
label = label.reshape((label.shape[0], 1)) label = label.reshape((label.shape[0], 1))
# TODO: Implement in memory cache if CACHE_DATA_IN_MEM:
# for key in keys: self.in_mem_data_cache[key] = (data, label)
# if CACHE_DATA_IN_MEM:
# tup = self.in_mem_data_cache.get(key)
# if tup is not None:
# images.append(tup[0])
# vprof.append(tup[1])
# label.append(tup[2])
# continue
#
# if CACHE_DATA_IN_MEM:
# self.in_mem_data_cache[key] = (nda, ndb, ndc)
return data, label return data, label
...@@ -354,15 +350,15 @@ class IcingIntensityNN: ...@@ -354,15 +350,15 @@ class IcingIntensityNN:
fac = 1 fac = 1
fc = build_residual_block(flat, drop_rate, fac*n_hidden, activation, 'Residual_Block_1') fc = build_residual_block(flat, drop_rate, fac*n_hidden, activation, 'Residual_Block_1', doBatchNorm=False)
fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_2') fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_2', doBatchNorm=False)
#fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_3') fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_3', doBatchNorm=False)
#fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_4') fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_4', doBatchNorm=False)
#fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_5') fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_5', doBatchNorm=False)
fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc) fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc)
fc = tf.keras.layers.BatchNormalization()(fc) fc = tf.keras.layers.BatchNormalization()(fc)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment