Skip to content
Snippets Groups Projects
Commit 1037a6f5 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 8d1a3525
Branches
No related tags found
No related merge requests found
...@@ -14,11 +14,11 @@ LOG_DEVICE_PLACEMENT = False ...@@ -14,11 +14,11 @@ LOG_DEVICE_PLACEMENT = False
CACHE_DATA_IN_MEM = True CACHE_DATA_IN_MEM = True
PROC_BATCH_SIZE = 60 PROC_BATCH_SIZE = 10240
PROC_BATCH_BUFFER_SIZE = 50000 PROC_BATCH_BUFFER_SIZE = 50000
NumLabels = 1 NumLabels = 1
BATCH_SIZE = 512 BATCH_SIZE = 256
NUM_EPOCHS = 200 NUM_EPOCHS = 20
TRACK_MOVING_AVERAGE = False TRACK_MOVING_AVERAGE = False
...@@ -350,7 +350,7 @@ class IcingIntensityNN: ...@@ -350,7 +350,7 @@ class IcingIntensityNN:
else: else:
flat = self.X_img flat = self.X_img
n_hidden = self.X_img.shape[1] n_hidden = self.X_img.shape[1]
n_hidden = 100 n_hidden = 40
fac = 1 fac = 1
...@@ -358,11 +358,11 @@ class IcingIntensityNN: ...@@ -358,11 +358,11 @@ class IcingIntensityNN:
fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_2') fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_2')
fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_3') #fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_3')
fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_4') #fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_4')
fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_5') #fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_5')
fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc) fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc)
fc = tf.keras.layers.BatchNormalization()(fc) fc = tf.keras.layers.BatchNormalization()(fc)
...@@ -402,8 +402,8 @@ class IcingIntensityNN: ...@@ -402,8 +402,8 @@ class IcingIntensityNN:
self.initial_learning_rate = initial_learning_rate self.initial_learning_rate = initial_learning_rate
def build_evaluation(self): def build_evaluation(self):
self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy') self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy') self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
self.train_loss = tf.keras.metrics.Mean(name='train_loss') self.train_loss = tf.keras.metrics.Mean(name='train_loss')
self.test_loss = tf.keras.metrics.Mean(name='test_loss') self.test_loss = tf.keras.metrics.Mean(name='test_loss')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment