Skip to content
Snippets Groups Projects
Commit 1037a6f5 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 8d1a3525
No related branches found
No related tags found
No related merge requests found
...@@ -14,11 +14,11 @@ LOG_DEVICE_PLACEMENT = False ...@@ -14,11 +14,11 @@ LOG_DEVICE_PLACEMENT = False
CACHE_DATA_IN_MEM = True CACHE_DATA_IN_MEM = True
PROC_BATCH_SIZE = 60 PROC_BATCH_SIZE = 10240
PROC_BATCH_BUFFER_SIZE = 50000 PROC_BATCH_BUFFER_SIZE = 50000
NumLabels = 1 NumLabels = 1
BATCH_SIZE = 512 BATCH_SIZE = 256
NUM_EPOCHS = 200 NUM_EPOCHS = 20
TRACK_MOVING_AVERAGE = False TRACK_MOVING_AVERAGE = False
...@@ -350,7 +350,7 @@ class IcingIntensityNN: ...@@ -350,7 +350,7 @@ class IcingIntensityNN:
else: else:
flat = self.X_img flat = self.X_img
n_hidden = self.X_img.shape[1] n_hidden = self.X_img.shape[1]
n_hidden = 100 n_hidden = 40
fac = 1 fac = 1
...@@ -358,11 +358,11 @@ class IcingIntensityNN: ...@@ -358,11 +358,11 @@ class IcingIntensityNN:
fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_2') fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_2')
fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_3') #fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_3')
fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_4') #fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_4')
fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_5') #fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_5')
fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc) fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc)
fc = tf.keras.layers.BatchNormalization()(fc) fc = tf.keras.layers.BatchNormalization()(fc)
...@@ -402,8 +402,8 @@ class IcingIntensityNN: ...@@ -402,8 +402,8 @@ class IcingIntensityNN:
self.initial_learning_rate = initial_learning_rate self.initial_learning_rate = initial_learning_rate
def build_evaluation(self): def build_evaluation(self):
self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy') self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy') self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
self.train_loss = tf.keras.metrics.Mean(name='train_loss') self.train_loss = tf.keras.metrics.Mean(name='train_loss')
self.test_loss = tf.keras.metrics.Mean(name='test_loss') self.test_loss = tf.keras.metrics.Mean(name='test_loss')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment