Skip to content
Snippets Groups Projects
Commit b30ed759 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 008edddd
No related branches found
No related tags found
No related merge requests found
......@@ -3,7 +3,7 @@ import tensorflow as tf
from util.plot_cm import confusion_matrix_values
from util.augment import augment_image
from util.setup_cloud_fraction import logdir, modeldir, now, ancillary_path
from util.util import EarlyStop, normalize, denormalize, get_grid_values_all
from util.util import EarlyStop, normalize, denormalize, scale, descale, get_grid_values_all
import glob
import os, datetime
import numpy as np
......@@ -261,7 +261,7 @@ class SRCNN:
self.test_label_files = None
# self.n_chans = len(data_params_half) + len(data_params_full) + 1
self.n_chans = 6
self.n_chans = 5
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
......@@ -291,25 +291,32 @@ class SRCNN:
input_label = np.concatenate(label_s)
data_norm = []
for param in data_params_half:
idx = params.index(param)
tmp = input_data[:, idx, :, :]
tmp = tmp[:, slc_y, slc_x]
tmp = normalize(tmp, param, mean_std_dct)
data_norm.append(tmp)
# for param in data_params_half:
# idx = params.index(param)
# tmp = input_data[:, idx, :, :]
# tmp = tmp[:, slc_y, slc_x]
# tmp = normalize(tmp, param, mean_std_dct)
# data_norm.append(tmp)
tmp = input_label[:, params_i.index('cloud_probability'), :, :]
tmp = get_grid_cell_mean(tmp)
tmp = tmp[:, slc_y, slc_x]
data_norm.append(tmp)
for param in sub_fields:
idx = params.index(param)
tmp = input_data[:, idx, :, :]
tmp = tmp[:, slc_y, slc_x]
if param != 'refl_substddev_ch01':
tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
# tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
tmp = scale(tmp, 'refl_0_65um_nom', mean_std_dct)
else:
tmp = np.where(np.isnan(tmp), 0, tmp)
data_norm.append(tmp)
tmp = input_label[:, label_idx_i, :, :]
tmp = get_grid_cell_mean(tmp)
tmp = scale(tmp, label_param, mean_std_dct)
tmp = tmp[:, slc_y, slc_x]
data_norm.append(tmp)
# ---------
......@@ -321,6 +328,7 @@ class SRCNN:
label = input_label[:, label_idx_i, :, :]
label = label[:, y_64, x_64]
label = get_cldy_frac_opd(label)
label = scale(label, label_param, mean_std_dct)
label = np.where(np.isnan(label), 0, label)
label = np.expand_dims(label, axis=3)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment