diff --git a/modules/deeplearning/cloud_opd_fcn_abi.py b/modules/deeplearning/cloud_opd_fcn_abi.py index 94aab18ad912d3841b847051206ed8c58c671ece..8a1750635d797b5c19b63ed3281871677f3e69f8 100644 --- a/modules/deeplearning/cloud_opd_fcn_abi.py +++ b/modules/deeplearning/cloud_opd_fcn_abi.py @@ -3,7 +3,7 @@ import tensorflow as tf from util.plot_cm import confusion_matrix_values from util.augment import augment_image from util.setup_cloud_fraction import logdir, modeldir, now, ancillary_path -from util.util import EarlyStop, normalize, denormalize, get_grid_values_all +from util.util import EarlyStop, normalize, denormalize, scale, descale, get_grid_values_all import glob import os, datetime import numpy as np @@ -261,7 +261,7 @@ class SRCNN: self.test_label_files = None # self.n_chans = len(data_params_half) + len(data_params_full) + 1 - self.n_chans = 6 + self.n_chans = 5 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) @@ -291,25 +291,32 @@ class SRCNN: input_label = np.concatenate(label_s) data_norm = [] - for param in data_params_half: - idx = params.index(param) - tmp = input_data[:, idx, :, :] - tmp = tmp[:, slc_y, slc_x] - tmp = normalize(tmp, param, mean_std_dct) - data_norm.append(tmp) + # for param in data_params_half: + # idx = params.index(param) + # tmp = input_data[:, idx, :, :] + # tmp = tmp[:, slc_y, slc_x] + # tmp = normalize(tmp, param, mean_std_dct) + # data_norm.append(tmp) + + tmp = input_label[:, params_i.index('cloud_probability'), :, :] + tmp = get_grid_cell_mean(tmp) + tmp = tmp[:, slc_y, slc_x] + data_norm.append(tmp) for param in sub_fields: idx = params.index(param) tmp = input_data[:, idx, :, :] tmp = tmp[:, slc_y, slc_x] if param != 'refl_substddev_ch01': - tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) + # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) + tmp = scale(tmp, 'refl_0_65um_nom', mean_std_dct) else: tmp = np.where(np.isnan(tmp), 0, tmp) data_norm.append(tmp) tmp = input_label[:, label_idx_i, :, :] tmp = get_grid_cell_mean(tmp) + tmp = scale(tmp, label_param, mean_std_dct) tmp = tmp[:, slc_y, slc_x] data_norm.append(tmp) # --------- @@ -321,6 +328,7 @@ class SRCNN: label = input_label[:, label_idx_i, :, :] label = label[:, y_64, x_64] label = get_cldy_frac_opd(label) + label = scale(label, label_param, mean_std_dct) label = np.where(np.isnan(label), 0, label) label = np.expand_dims(label, axis=3)