Skip to content
Snippets Groups Projects
Commit ab0dd90a authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 29f9e806
Branches
No related tags found
No related merge requests found
......@@ -70,18 +70,20 @@ N_X = N_Y = 1
LEN_X = LEN_Y = 128
if KERNEL_SIZE == 3:
slc_x = slice(2, N_X*LEN_X + 4)
slc_y = slice(2, N_Y*LEN_Y + 4)
slc_x_2 = slice(1, N_X*LEN_X + 6, 2)
slc_y_2 = slice(1, N_Y*LEN_Y + 6, 2)
slc_x_m = slice(1, int((N_X*LEN_X)/2) + 4)
slc_y_m = slice(1, int((N_Y*LEN_Y)/2) + 4)
slc_x = slice(3, N_X*LEN_X + 5)
slc_y = slice(3, N_Y*LEN_Y + 5)
slc_x_2 = slice(2, N_X*LEN_X + 7, 2)
slc_y_2 = slice(2, N_Y*LEN_Y + 7, 2)
x_2 = np.arange(int((N_X*LEN_X)/2) + 3)
y_2 = np.arange(int((N_Y*LEN_Y)/2) + 3)
t = np.arange(0, int((N_X*LEN_X)/2) + 3, 0.5)
s = np.arange(0, int((N_Y*LEN_Y)/2) + 3, 0.5)
x_k = slice(1, N_X*LEN_X + 3)
y_k = slice(1, N_Y*LEN_Y + 3)
x_128 = slice(3, N_X*LEN_X + 3)
y_128 = slice(3, N_Y*LEN_Y + 3)
x_128 = slice(4, N_X*LEN_X + 4)
y_128 = slice(4, N_Y*LEN_Y + 4)
elif KERNEL_SIZE == 5:
slc_x = slice(3, 135)
slc_y = slice(3, 135)
......@@ -120,7 +122,6 @@ def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.
def upsample(tmp):
tmp = tmp[:, slc_y_2, slc_x_2]
tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
tmp = tmp[:, y_k, x_k]
return tmp
......@@ -290,9 +291,10 @@ class SRCNN:
data_norm = []
for param in data_params_half:
idx = params_i.index(param)
tmp = input_label[:, idx, :, :]
idx = params.index(param)
tmp = input_data[:, idx, :, :]
tmp = np.where(np.isnan(tmp), 0, tmp)
tmp = tmp[:, slc_y_m, slc_x_m]
tmp = upsample(tmp)
tmp = normalize(tmp, param, mean_std_dct)
data_norm.append(tmp)
......@@ -302,23 +304,24 @@ class SRCNN:
tmp = input_label[:, idx, :, :]
tmp = np.where(np.isnan(tmp), 0, tmp)
lo, hi, std, avg = get_min_max_std(tmp)
lo = upsample_nearest(lo)
hi = upsample_nearest(hi)
avg = upsample_nearest(avg)
lo = normalize(lo, param, mean_std_dct)
hi = normalize(hi, param, mean_std_dct)
avg = normalize(avg, param, mean_std_dct)
# lo, hi, std, avg = get_min_max_std(tmp)
# lo = upsample_nearest(lo)
# hi = upsample_nearest(hi)
# avg = upsample_nearest(avg)
# lo = normalize(lo, param, mean_std_dct)
# hi = normalize(hi, param, mean_std_dct)
# avg = normalize(avg, param, mean_std_dct)
#
# data_norm.append(lo[:, slc_y, slc_x])
# data_norm.append(hi[:, slc_y, slc_x])
# data_norm.append(avg[:, slc_y, slc_x])
data_norm.append(lo[:, slc_y, slc_x])
data_norm.append(hi[:, slc_y, slc_x])
data_norm.append(avg[:, slc_y, slc_x])
# tmp = normalize(tmp, param, mean_std_dct)
# data_norm.append(tmp[:, slc_y, slc_x])
tmp = normalize(tmp, param, mean_std_dct)
data_norm.append(tmp[:, slc_y, slc_x])
# ---------------------------------------------------
tmp = input_label[:, label_idx_i, :, :]
tmp = np.where(np.isnan(tmp), 0, tmp)
tmp = tmp[:, slc_y_2, slc_x_2]
tmp = upsample(tmp)
data_norm.append(tmp)
# ---------
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment