From ab0dd90a5b64c6643b500581ea320a9e79221275 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Sat, 22 Apr 2023 11:57:58 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/cloud_opd_srcnn_viirs.py | 47 ++++++++++--------- 1 file changed, 25 insertions(+), 22 deletions(-) diff --git a/modules/deeplearning/cloud_opd_srcnn_viirs.py b/modules/deeplearning/cloud_opd_srcnn_viirs.py index 506a24c6..c08f1671 100644 --- a/modules/deeplearning/cloud_opd_srcnn_viirs.py +++ b/modules/deeplearning/cloud_opd_srcnn_viirs.py @@ -70,18 +70,20 @@ N_X = N_Y = 1 LEN_X = LEN_Y = 128 if KERNEL_SIZE == 3: - slc_x = slice(2, N_X*LEN_X + 4) - slc_y = slice(2, N_Y*LEN_Y + 4) - slc_x_2 = slice(1, N_X*LEN_X + 6, 2) - slc_y_2 = slice(1, N_Y*LEN_Y + 6, 2) + slc_x_m = slice(1, int((N_X*LEN_X)/2) + 4) + slc_y_m = slice(1, int((N_Y*LEN_Y)/2) + 4) + slc_x = slice(3, N_X*LEN_X + 5) + slc_y = slice(3, N_Y*LEN_Y + 5) + slc_x_2 = slice(2, N_X*LEN_X + 7, 2) + slc_y_2 = slice(2, N_Y*LEN_Y + 7, 2) x_2 = np.arange(int((N_X*LEN_X)/2) + 3) y_2 = np.arange(int((N_Y*LEN_Y)/2) + 3) t = np.arange(0, int((N_X*LEN_X)/2) + 3, 0.5) s = np.arange(0, int((N_Y*LEN_Y)/2) + 3, 0.5) x_k = slice(1, N_X*LEN_X + 3) y_k = slice(1, N_Y*LEN_Y + 3) - x_128 = slice(3, N_X*LEN_X + 3) - y_128 = slice(3, N_Y*LEN_Y + 3) + x_128 = slice(4, N_X*LEN_X + 4) + y_128 = slice(4, N_Y*LEN_Y + 4) elif KERNEL_SIZE == 5: slc_x = slice(3, 135) slc_y = slice(3, 135) @@ -120,7 +122,6 @@ def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn. def upsample(tmp): - tmp = tmp[:, slc_y_2, slc_x_2] tmp = resample_2d_linear(x_2, y_2, tmp, t, s) tmp = tmp[:, y_k, x_k] return tmp @@ -290,9 +291,10 @@ class SRCNN: data_norm = [] for param in data_params_half: - idx = params_i.index(param) - tmp = input_label[:, idx, :, :] + idx = params.index(param) + tmp = input_data[:, idx, :, :] tmp = np.where(np.isnan(tmp), 0, tmp) + tmp = tmp[:, slc_y_m, slc_x_m] tmp = upsample(tmp) tmp = normalize(tmp, param, mean_std_dct) data_norm.append(tmp) @@ -302,23 +304,24 @@ class SRCNN: tmp = input_label[:, idx, :, :] tmp = np.where(np.isnan(tmp), 0, tmp) - lo, hi, std, avg = get_min_max_std(tmp) - lo = upsample_nearest(lo) - hi = upsample_nearest(hi) - avg = upsample_nearest(avg) - lo = normalize(lo, param, mean_std_dct) - hi = normalize(hi, param, mean_std_dct) - avg = normalize(avg, param, mean_std_dct) + # lo, hi, std, avg = get_min_max_std(tmp) + # lo = upsample_nearest(lo) + # hi = upsample_nearest(hi) + # avg = upsample_nearest(avg) + # lo = normalize(lo, param, mean_std_dct) + # hi = normalize(hi, param, mean_std_dct) + # avg = normalize(avg, param, mean_std_dct) + # + # data_norm.append(lo[:, slc_y, slc_x]) + # data_norm.append(hi[:, slc_y, slc_x]) + # data_norm.append(avg[:, slc_y, slc_x]) - data_norm.append(lo[:, slc_y, slc_x]) - data_norm.append(hi[:, slc_y, slc_x]) - data_norm.append(avg[:, slc_y, slc_x]) - - # tmp = normalize(tmp, param, mean_std_dct) - # data_norm.append(tmp[:, slc_y, slc_x]) + tmp = normalize(tmp, param, mean_std_dct) + data_norm.append(tmp[:, slc_y, slc_x]) # --------------------------------------------------- tmp = input_label[:, label_idx_i, :, :] tmp = np.where(np.isnan(tmp), 0, tmp) + tmp = tmp[:, slc_y_2, slc_x_2] tmp = upsample(tmp) data_norm.append(tmp) # --------- -- GitLab