Skip to content
Snippets Groups Projects
Commit a9fda5b2 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 1019bab7
No related branches found
No related tags found
No related merge requests found
...@@ -130,26 +130,37 @@ def upsample_mean(grd): ...@@ -130,26 +130,37 @@ def upsample_mean(grd):
def get_grid_cell_mean(grd_k): def get_grid_cell_mean(grd_k):
grd_k = np.where(np.isnan(grd_k), 0, grd_k) grd_k = np.where(np.isnan(grd_k), 0, grd_k)
a = grd_k[:, 0::4, 0::4]
b = grd_k[:, 1::4, 0::4] mean = np.nanmean([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
c = grd_k[:, 0::4, 1::4] grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
d = grd_k[:, 1::4, 1::4] grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
mean = np.nanmean([a, b, c, d], axis=0) grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)
return mean return mean
def get_min_max_std(grd_k): def get_min_max_std(grd_k):
grd_k = np.where(np.isnan(grd_k), 0, grd_k) grd_k = np.where(np.isnan(grd_k), 0, grd_k)
a = grd_k[:, 0::4, 0::4]
b = grd_k[:, 1::4, 0::4] lo = np.nanmin([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
c = grd_k[:, 0::4, 1::4] grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
d = grd_k[:, 1::4, 1::4] grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)
lo = np.nanmin([a, b, c, d], axis=0)
hi = np.nanmax([a, b, c, d], axis=0) hi = np.nanmax([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
std = np.nanstd([a, b, c, d], axis=0) grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
avg = np.nanmean([a, b, c, d], axis=0) grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)
std = np.nanstd([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)
avg = np.nanmean([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4],
grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4],
grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4],
grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0)
return lo, hi, std, avg return lo, hi, std, avg
... ...
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment