diff --git a/modules/deeplearning/cloud_fraction_fcn_abi.py b/modules/deeplearning/cloud_fraction_fcn_abi.py index 717009d1aec0e5fee9b8c2147ed7d7c120edbf82..e990e5fa1a5e76156b58c64a64cc802c65e5f097 100644 --- a/modules/deeplearning/cloud_fraction_fcn_abi.py +++ b/modules/deeplearning/cloud_fraction_fcn_abi.py @@ -130,26 +130,37 @@ def upsample_mean(grd): def get_grid_cell_mean(grd_k): grd_k = np.where(np.isnan(grd_k), 0, grd_k) - a = grd_k[:, 0::4, 0::4] - b = grd_k[:, 1::4, 0::4] - c = grd_k[:, 0::4, 1::4] - d = grd_k[:, 1::4, 1::4] - mean = np.nanmean([a, b, c, d], axis=0) + + mean = np.nanmean([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4], + grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4], + grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4], + grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0) return mean def get_min_max_std(grd_k): grd_k = np.where(np.isnan(grd_k), 0, grd_k) - a = grd_k[:, 0::4, 0::4] - b = grd_k[:, 1::4, 0::4] - c = grd_k[:, 0::4, 1::4] - d = grd_k[:, 1::4, 1::4] - - lo = np.nanmin([a, b, c, d], axis=0) - hi = np.nanmax([a, b, c, d], axis=0) - std = np.nanstd([a, b, c, d], axis=0) - avg = np.nanmean([a, b, c, d], axis=0) + + lo = np.nanmin([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4], + grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4], + grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4], + grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0) + + hi = np.nanmax([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4], + grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4], + grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4], + grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0) + + std = np.nanstd([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4], + grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4], + grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4], + grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0) + + avg = np.nanmean([grd_k[:, 0::4, 0::4], grd_k[:, 1::4, 0::4], grd_k[:, 2::4, 0::4], grd_k[:, 3::4, 0::4], + grd_k[:, 0::4, 1::4], grd_k[:, 1::4, 1::4], grd_k[:, 2::4, 1::4], grd_k[:, 3::4, 1::4], + grd_k[:, 0::4, 2::4], grd_k[:, 1::4, 2::4], grd_k[:, 2::4, 2::4], grd_k[:, 3::4, 2::4], + grd_k[:, 0::4, 3::4], grd_k[:, 1::4, 3::4], grd_k[:, 2::4, 3::4], grd_k[:, 3::4, 3::4]], axis=0) return lo, hi, std, avg