Skip to content
Snippets Groups Projects
Commit 9d174842 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent c4ffcf6d
Branches
No related tags found
No related merge requests found
...@@ -69,21 +69,21 @@ print('data_params_full: ', data_params_full) ...@@ -69,21 +69,21 @@ print('data_params_full: ', data_params_full)
print('label_param: ', label_param) print('label_param: ', label_param)
KERNEL_SIZE = 3 # target size: (128, 128) KERNEL_SIZE = 3 # target size: (128, 128)
N = 1 N_X = N_Y = 1
if KERNEL_SIZE == 3: if KERNEL_SIZE == 3:
slc_x = slice(2, N*128 + 4) slc_x = slice(2, N_X*128 + 4)
slc_y = slice(2, N*128 + 4) slc_y = slice(2, N_Y*128 + 4)
slc_x_2 = slice(1, N*128 + 6, 2) slc_x_2 = slice(1, N_X*128 + 6, 2)
slc_y_2 = slice(1, N*128 + 6, 2) slc_y_2 = slice(1, N_Y*128 + 6, 2)
x_2 = np.arange(int((N*128)/2) + 3) x_2 = np.arange(int((N_X*128)/2) + 3)
y_2 = np.arange(int((N*128)/2) + 3) y_2 = np.arange(int((N_Y*128)/2) + 3)
t = np.arange(0, int((N*128)/2) + 3, 0.5) t = np.arange(0, int((N_X*128)/2) + 3, 0.5)
s = np.arange(0, int((N*128)/2) + 3, 0.5) s = np.arange(0, int((N_Y*128)/2) + 3, 0.5)
x_k = slice(1, N*128 + 3) x_k = slice(1, N_X*128 + 3)
y_k = slice(1, N*128 + 3) y_k = slice(1, N_Y*128 + 3)
x_128 = slice(3, N*128 + 3) x_128 = slice(3, N_X*128 + 3)
y_128 = slice(3, N*128 + 3) y_128 = slice(3, N_Y*128 + 3)
elif KERNEL_SIZE == 5: elif KERNEL_SIZE == 5:
slc_x = slice(3, 135) slc_x = slice(3, 135)
slc_y = slice(3, 135) slc_y = slice(3, 135)
...@@ -718,47 +718,42 @@ def run_restore_static(directory, ckpt_dir, out_file=None): ...@@ -718,47 +718,42 @@ def run_restore_static(directory, ckpt_dir, out_file=None):
def run_evaluate_static(in_file, out_file, ckpt_dir): def run_evaluate_static(in_file, out_file, ckpt_dir):
N = 10 N_X = N_Y = 10
slc_x = slice(2, N*128 + 4) slc_x = slice(2, N_X*128 + 4)
slc_y = slice(2, N*128 + 4) slc_y = slice(2, N_Y*128 + 4)
slc_x_2 = slice(1, N*128 + 6, 2) slc_x_2 = slice(1, N_X*128 + 6, 2)
slc_y_2 = slice(1, N*128 + 6, 2) slc_y_2 = slice(1, N_Y*128 + 6, 2)
x_2 = np.arange(int((N*128)/2) + 3) x_2 = np.arange(int((N_X*128)/2) + 3)
y_2 = np.arange(int((N*128)/2) + 3) y_2 = np.arange(int((N_Y*128)/2) + 3)
t = np.arange(0, int((N*128)/2) + 3, 0.5) t = np.arange(0, int((N_X*128)/2) + 3, 0.5)
s = np.arange(0, int((N*128)/2) + 3, 0.5) s = np.arange(0, int((N_Y*128)/2) + 3, 0.5)
x_k = slice(1, N*128 + 3) x_k = slice(1, N_X*128 + 3)
y_k = slice(1, N*128 + 3) y_k = slice(1, N_Y*128 + 3)
x_128 = slice(3, N*128 + 3) x_128 = slice(3, N_X*128 + 3)
y_128 = slice(3, N*128 + 3) y_128 = slice(3, N_Y*128 + 3)
sub_y, sub_x = (N * 128) + 10, (N * 128) + 10 sub_y, sub_x = (N_Y * 128) + 10, (N_X * 128) + 10
y_0, x_0, = 3232 - int(sub_y/2), 3200 - int(sub_x/2) y_0, x_0, = 3232 - int(sub_y/2), 3200 - int(sub_x/2)
h5f = h5py.File(in_file, 'r') h5f = h5py.File(in_file, 'r')
grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom') grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom')
grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x] grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x]
grd_a = grd_a.copy()
grd_a = np.where(np.isnan(grd_a), 0, grd_a) grd_a = np.where(np.isnan(grd_a), 0, grd_a)
hr_grd_a = grd_a.copy() hr_grd_a = grd_a.copy()
hr_grd_a = hr_grd_a[y_128, x_128] grd_a = upsample(grd_a)
# Full res:
# grd_a = grd_a[slc_y, slc_x]
# Half res:
grd_a = grd_a[slc_y_2, slc_x_2]
grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s)
grd_a = grd_a[y_k, x_k]
grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct)
hr_grd_a = hr_grd_a[y_128, x_128]
# ------------------------------------------------------ # ------------------------------------------------------
grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom') grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom')
grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x] grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x]
grd_b = grd_b.copy()
grd_b = np.where(np.isnan(grd_b), 0, grd_b) grd_b = np.where(np.isnan(grd_b), 0, grd_b)
hr_grd_b = grd_b.copy() hr_grd_b = grd_b.copy()
hr_grd_b = hr_grd_b[y_128, x_128] hr_grd_b = hr_grd_b[y_128, x_128]
grd_b = grd_b[slc_y, slc_x] # Full res:
grd_b = grd_b[:, slc_y, slc_x]
grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct)
grd_c = get_grid_values_all(h5f, label_param) grd_c = get_grid_values_all(h5f, label_param)
...@@ -766,13 +761,9 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): ...@@ -766,13 +761,9 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
hr_grd_c = grd_c.copy() hr_grd_c = grd_c.copy()
hr_grd_c = np.where(np.isnan(hr_grd_c), 0, grd_c) hr_grd_c = np.where(np.isnan(hr_grd_c), 0, grd_c)
hr_grd_c = hr_grd_c[y_128, x_128] hr_grd_c = hr_grd_c[y_128, x_128]
# hr_grd_c = smooth_2d_single(hr_grd_c, sigma=1.0)
grd_c = np.where(np.isnan(grd_c), 0, grd_c) grd_c = np.where(np.isnan(grd_c), 0, grd_c)
grd_c = grd_c.copy() grd_c = upsample(grd_c)
# grd_c = smooth_2d_single(grd_c, sigma=1.0)
grd_c = grd_c[slc_y_2, slc_x_2]
grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s)
grd_c = grd_c[y_k, x_k]
if label_param != 'cloud_probability': if label_param != 'cloud_probability':
grd_c = normalize(grd_c, label_param, mean_std_dct) grd_c = normalize(grd_c, label_param, mean_std_dct)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment