diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 2dcb906ddbd5f017bccbbf1cbaae58a8dba20371..41289cae8c8084418e888796439edd23b26a2721 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -69,21 +69,21 @@ print('data_params_full: ', data_params_full) print('label_param: ', label_param) KERNEL_SIZE = 3 # target size: (128, 128) -N = 1 +N_X = N_Y = 1 if KERNEL_SIZE == 3: - slc_x = slice(2, N*128 + 4) - slc_y = slice(2, N*128 + 4) - slc_x_2 = slice(1, N*128 + 6, 2) - slc_y_2 = slice(1, N*128 + 6, 2) - x_2 = np.arange(int((N*128)/2) + 3) - y_2 = np.arange(int((N*128)/2) + 3) - t = np.arange(0, int((N*128)/2) + 3, 0.5) - s = np.arange(0, int((N*128)/2) + 3, 0.5) - x_k = slice(1, N*128 + 3) - y_k = slice(1, N*128 + 3) - x_128 = slice(3, N*128 + 3) - y_128 = slice(3, N*128 + 3) + slc_x = slice(2, N_X*128 + 4) + slc_y = slice(2, N_Y*128 + 4) + slc_x_2 = slice(1, N_X*128 + 6, 2) + slc_y_2 = slice(1, N_Y*128 + 6, 2) + x_2 = np.arange(int((N_X*128)/2) + 3) + y_2 = np.arange(int((N_Y*128)/2) + 3) + t = np.arange(0, int((N_X*128)/2) + 3, 0.5) + s = np.arange(0, int((N_Y*128)/2) + 3, 0.5) + x_k = slice(1, N_X*128 + 3) + y_k = slice(1, N_Y*128 + 3) + x_128 = slice(3, N_X*128 + 3) + y_128 = slice(3, N_Y*128 + 3) elif KERNEL_SIZE == 5: slc_x = slice(3, 135) slc_y = slice(3, 135) @@ -718,47 +718,42 @@ def run_restore_static(directory, ckpt_dir, out_file=None): def run_evaluate_static(in_file, out_file, ckpt_dir): - N = 10 - - slc_x = slice(2, N*128 + 4) - slc_y = slice(2, N*128 + 4) - slc_x_2 = slice(1, N*128 + 6, 2) - slc_y_2 = slice(1, N*128 + 6, 2) - x_2 = np.arange(int((N*128)/2) + 3) - y_2 = np.arange(int((N*128)/2) + 3) - t = np.arange(0, int((N*128)/2) + 3, 0.5) - s = np.arange(0, int((N*128)/2) + 3, 0.5) - x_k = slice(1, N*128 + 3) - y_k = slice(1, N*128 + 3) - x_128 = slice(3, N*128 + 3) - y_128 = slice(3, N*128 + 3) - - sub_y, sub_x = (N * 128) + 10, (N * 128) + 10 + N_X = N_Y = 10 + + slc_x = slice(2, N_X*128 + 4) + slc_y = slice(2, N_Y*128 + 4) + slc_x_2 = slice(1, N_X*128 + 6, 2) + slc_y_2 = slice(1, N_Y*128 + 6, 2) + x_2 = np.arange(int((N_X*128)/2) + 3) + y_2 = np.arange(int((N_Y*128)/2) + 3) + t = np.arange(0, int((N_X*128)/2) + 3, 0.5) + s = np.arange(0, int((N_Y*128)/2) + 3, 0.5) + x_k = slice(1, N_X*128 + 3) + y_k = slice(1, N_Y*128 + 3) + x_128 = slice(3, N_X*128 + 3) + y_128 = slice(3, N_Y*128 + 3) + + sub_y, sub_x = (N_Y * 128) + 10, (N_X * 128) + 10 y_0, x_0, = 3232 - int(sub_y/2), 3200 - int(sub_x/2) h5f = h5py.File(in_file, 'r') grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom') grd_a = grd_a[y_0:y_0+sub_y, x_0:x_0+sub_x] - grd_a = grd_a.copy() grd_a = np.where(np.isnan(grd_a), 0, grd_a) hr_grd_a = grd_a.copy() - hr_grd_a = hr_grd_a[y_128, x_128] - # Full res: - # grd_a = grd_a[slc_y, slc_x] - # Half res: - grd_a = grd_a[slc_y_2, slc_x_2] - grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s) - grd_a = grd_a[y_k, x_k] + grd_a = upsample(grd_a) grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) + hr_grd_a = hr_grd_a[y_128, x_128] + # ------------------------------------------------------ grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom') grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x] - grd_b = grd_b.copy() grd_b = np.where(np.isnan(grd_b), 0, grd_b) hr_grd_b = grd_b.copy() hr_grd_b = hr_grd_b[y_128, x_128] - grd_b = grd_b[slc_y, slc_x] + # Full res: + grd_b = grd_b[:, slc_y, slc_x] grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) grd_c = get_grid_values_all(h5f, label_param) @@ -766,13 +761,9 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): hr_grd_c = grd_c.copy() hr_grd_c = np.where(np.isnan(hr_grd_c), 0, grd_c) hr_grd_c = hr_grd_c[y_128, x_128] - # hr_grd_c = smooth_2d_single(hr_grd_c, sigma=1.0) + grd_c = np.where(np.isnan(grd_c), 0, grd_c) - grd_c = grd_c.copy() - # grd_c = smooth_2d_single(grd_c, sigma=1.0) - grd_c = grd_c[slc_y_2, slc_x_2] - grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s) - grd_c = grd_c[y_k, x_k] + grd_c = upsample(grd_c) if label_param != 'cloud_probability': grd_c = normalize(grd_c, label_param, mean_std_dct)