Skip to content
Snippets Groups Projects
Commit 8ed9c2d7 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent bb0b392a
Branches
No related tags found
No related merge requests found
...@@ -39,10 +39,10 @@ def keep_tile(param, param_s, tile): ...@@ -39,10 +39,10 @@ def keep_tile(param, param_s, tile):
def process_cld_prob_(grd_k): def process_cld_prob_(grd_k):
keep = np.invert(np.isnan(grd_k)) keep = np.invert(np.isnan(grd_k))
num_keep = np.sum(keep) num_keep = np.sum(keep)
if num_keep / grd_k.size < 0.98: # if num_keep / grd_k.size < 0.98:
return None # return None
keep = np.where(keep, np.logical_and(0.05 < grd_k, grd_k < 0.95), False) keep = np.where(keep, np.logical_and(0.1 < grd_k, grd_k < 0.90), False)
if np.sum(keep)/num_keep < 0.50: if np.sum(keep)/num_keep < 0.25:
return None return None
grd_k = np.where(np.invert(keep), 0, grd_k) grd_k = np.where(np.invert(keep), 0, grd_k)
return grd_k return grd_k
...@@ -51,8 +51,8 @@ def process_cld_prob_(grd_k): ...@@ -51,8 +51,8 @@ def process_cld_prob_(grd_k):
def process_cld_opd_(grd_k): def process_cld_opd_(grd_k):
keep = np.invert(np.isnan(grd_k)) keep = np.invert(np.isnan(grd_k))
num_keep = np.sum(keep) num_keep = np.sum(keep)
if num_keep / grd_k.size < 0.98: # if num_keep / grd_k.size < 0.98:
return None # return None
grd_k = np.where(np.invert(keep), 0, grd_k) grd_k = np.where(np.invert(keep), 0, grd_k)
keep = np.where(keep, np.logical_and(0.1 < grd_k, grd_k < 158.0), False) keep = np.where(keep, np.logical_and(0.1 < grd_k, grd_k < 158.0), False)
if np.sum(keep)/num_keep < 0.50: if np.sum(keep)/num_keep < 0.50:
...@@ -78,6 +78,7 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st ...@@ -78,6 +78,7 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st
num_files = len(data_files) num_files = len(data_files)
print('Start, number of files: ', num_files) print('Start, number of files: ', num_files)
kept_cnt = 0
for idx, data_f in enumerate(data_files): for idx, data_f in enumerate(data_files):
# if idx % 4 == 0: # if we want to skip some files # if idx % 4 == 0: # if we want to skip some files
...@@ -96,42 +97,42 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st ...@@ -96,42 +97,42 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st
print(e) print(e)
h5f.close() h5f.close()
continue continue
kept_cnt += kept
print(data_f, int(100 * (kept/total))) print(data_f, kept_cnt, int(100 * (kept/total)))
f_cnt += 1 f_cnt += 1
h5f.close() h5f.close()
if len(data_train_tiles) == 0: if len(data_train_tiles) == 0:
continue continue
if (f_cnt % 5) == 0: # if (f_cnt % 5) == 0:
num_valid_samples = 0 # num_valid_samples = 0
if len(data_valid_tiles) > 0: # if len(data_valid_tiles) > 0:
label_valid = np.stack(label_valid_tiles) # label_valid = np.stack(label_valid_tiles)
data_valid = np.stack(data_valid_tiles) # data_valid = np.stack(data_valid_tiles)
np.save(out_directory + 'data_valid_' + str(cnt), data_valid) # np.save(out_directory + 'data_valid_' + str(cnt), data_valid)
np.save(out_directory + 'label_valid_' + str(cnt), label_valid) # np.save(out_directory + 'label_valid_' + str(cnt), label_valid)
num_valid_samples = data_valid.shape[0] # num_valid_samples = data_valid.shape[0]
#
label_train = np.stack(label_train_tiles) # label_train = np.stack(label_train_tiles)
data_train = np.stack(data_train_tiles) # data_train = np.stack(data_train_tiles)
np.save(out_directory + 'label_train_' + str(cnt), label_train) # np.save(out_directory + 'label_train_' + str(cnt), label_train)
np.save(out_directory + 'data_train_' + str(cnt), data_train) # np.save(out_directory + 'data_train_' + str(cnt), data_train)
num_train_samples = data_train.shape[0] # num_train_samples = data_train.shape[0]
#
label_valid_tiles = [] # label_valid_tiles = []
label_train_tiles = [] # label_train_tiles = []
data_valid_tiles = [] # data_valid_tiles = []
data_train_tiles = [] # data_train_tiles = []
#
print(' num_train_samples, num_valid_samples, progress % : ', num_train_samples, num_valid_samples, int((f_cnt/num_files)*100)) # print(' num_train_samples, num_valid_samples, progress % : ', num_train_samples, num_valid_samples, int((f_cnt/num_files)*100))
total_num_train_samples += num_train_samples # total_num_train_samples += num_train_samples
total_num_valid_samples += num_valid_samples # total_num_valid_samples += num_valid_samples
print('total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples) # print('total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples)
#
cnt += 1 # cnt += 1
#
print('** total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples) # print('** total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples)
# tile_width: Must be even! # tile_width: Must be even!
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment