Skip to content
Snippets Groups Projects
Commit 8ed9c2d7 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent bb0b392a
No related branches found
No related tags found
No related merge requests found
......@@ -39,10 +39,10 @@ def keep_tile(param, param_s, tile):
def process_cld_prob_(grd_k):
keep = np.invert(np.isnan(grd_k))
num_keep = np.sum(keep)
if num_keep / grd_k.size < 0.98:
return None
keep = np.where(keep, np.logical_and(0.05 < grd_k, grd_k < 0.95), False)
if np.sum(keep)/num_keep < 0.50:
# if num_keep / grd_k.size < 0.98:
# return None
keep = np.where(keep, np.logical_and(0.1 < grd_k, grd_k < 0.90), False)
if np.sum(keep)/num_keep < 0.25:
return None
grd_k = np.where(np.invert(keep), 0, grd_k)
return grd_k
......@@ -51,8 +51,8 @@ def process_cld_prob_(grd_k):
def process_cld_opd_(grd_k):
keep = np.invert(np.isnan(grd_k))
num_keep = np.sum(keep)
if num_keep / grd_k.size < 0.98:
return None
# if num_keep / grd_k.size < 0.98:
# return None
grd_k = np.where(np.invert(keep), 0, grd_k)
keep = np.where(keep, np.logical_and(0.1 < grd_k, grd_k < 158.0), False)
if np.sum(keep)/num_keep < 0.50:
......@@ -78,6 +78,7 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st
num_files = len(data_files)
print('Start, number of files: ', num_files)
kept_cnt = 0
for idx, data_f in enumerate(data_files):
# if idx % 4 == 0: # if we want to skip some files
......@@ -96,42 +97,42 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st
print(e)
h5f.close()
continue
print(data_f, int(100 * (kept/total)))
kept_cnt += kept
print(data_f, kept_cnt, int(100 * (kept/total)))
f_cnt += 1
h5f.close()
if len(data_train_tiles) == 0:
continue
if (f_cnt % 5) == 0:
num_valid_samples = 0
if len(data_valid_tiles) > 0:
label_valid = np.stack(label_valid_tiles)
data_valid = np.stack(data_valid_tiles)
np.save(out_directory + 'data_valid_' + str(cnt), data_valid)
np.save(out_directory + 'label_valid_' + str(cnt), label_valid)
num_valid_samples = data_valid.shape[0]
label_train = np.stack(label_train_tiles)
data_train = np.stack(data_train_tiles)
np.save(out_directory + 'label_train_' + str(cnt), label_train)
np.save(out_directory + 'data_train_' + str(cnt), data_train)
num_train_samples = data_train.shape[0]
label_valid_tiles = []
label_train_tiles = []
data_valid_tiles = []
data_train_tiles = []
print(' num_train_samples, num_valid_samples, progress % : ', num_train_samples, num_valid_samples, int((f_cnt/num_files)*100))
total_num_train_samples += num_train_samples
total_num_valid_samples += num_valid_samples
print('total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples)
cnt += 1
print('** total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples)
# if (f_cnt % 5) == 0:
# num_valid_samples = 0
# if len(data_valid_tiles) > 0:
# label_valid = np.stack(label_valid_tiles)
# data_valid = np.stack(data_valid_tiles)
# np.save(out_directory + 'data_valid_' + str(cnt), data_valid)
# np.save(out_directory + 'label_valid_' + str(cnt), label_valid)
# num_valid_samples = data_valid.shape[0]
#
# label_train = np.stack(label_train_tiles)
# data_train = np.stack(data_train_tiles)
# np.save(out_directory + 'label_train_' + str(cnt), label_train)
# np.save(out_directory + 'data_train_' + str(cnt), data_train)
# num_train_samples = data_train.shape[0]
#
# label_valid_tiles = []
# label_train_tiles = []
# data_valid_tiles = []
# data_train_tiles = []
#
# print(' num_train_samples, num_valid_samples, progress % : ', num_train_samples, num_valid_samples, int((f_cnt/num_files)*100))
# total_num_train_samples += num_train_samples
# total_num_valid_samples += num_valid_samples
# print('total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples)
#
# cnt += 1
#
# print('** total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples)
# tile_width: Must be even!
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment