From 8ed9c2d7dcf5b539bd86e30cbfce11fbc52498fa Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Wed, 15 Feb 2023 11:40:01 -0600 Subject: [PATCH] snapshot... --- modules/util/viirs_surfrad.py | 73 ++++++++++++++++++----------------- 1 file changed, 37 insertions(+), 36 deletions(-) diff --git a/modules/util/viirs_surfrad.py b/modules/util/viirs_surfrad.py index a9e71a03..d86c5d8b 100644 --- a/modules/util/viirs_surfrad.py +++ b/modules/util/viirs_surfrad.py @@ -39,10 +39,10 @@ def keep_tile(param, param_s, tile): def process_cld_prob_(grd_k): keep = np.invert(np.isnan(grd_k)) num_keep = np.sum(keep) - if num_keep / grd_k.size < 0.98: - return None - keep = np.where(keep, np.logical_and(0.05 < grd_k, grd_k < 0.95), False) - if np.sum(keep)/num_keep < 0.50: + # if num_keep / grd_k.size < 0.98: + # return None + keep = np.where(keep, np.logical_and(0.1 < grd_k, grd_k < 0.90), False) + if np.sum(keep)/num_keep < 0.25: return None grd_k = np.where(np.invert(keep), 0, grd_k) return grd_k @@ -51,8 +51,8 @@ def process_cld_prob_(grd_k): def process_cld_opd_(grd_k): keep = np.invert(np.isnan(grd_k)) num_keep = np.sum(keep) - if num_keep / grd_k.size < 0.98: - return None + # if num_keep / grd_k.size < 0.98: + # return None grd_k = np.where(np.invert(keep), 0, grd_k) keep = np.where(keep, np.logical_and(0.1 < grd_k, grd_k < 158.0), False) if np.sum(keep)/num_keep < 0.50: @@ -78,6 +78,7 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st num_files = len(data_files) print('Start, number of files: ', num_files) + kept_cnt = 0 for idx, data_f in enumerate(data_files): # if idx % 4 == 0: # if we want to skip some files @@ -96,42 +97,42 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st print(e) h5f.close() continue - - print(data_f, int(100 * (kept/total))) + kept_cnt += kept + print(data_f, kept_cnt, int(100 * (kept/total))) f_cnt += 1 h5f.close() if len(data_train_tiles) == 0: continue - if (f_cnt % 5) == 0: - num_valid_samples = 0 - if len(data_valid_tiles) > 0: - label_valid = np.stack(label_valid_tiles) - data_valid = np.stack(data_valid_tiles) - np.save(out_directory + 'data_valid_' + str(cnt), data_valid) - np.save(out_directory + 'label_valid_' + str(cnt), label_valid) - num_valid_samples = data_valid.shape[0] - - label_train = np.stack(label_train_tiles) - data_train = np.stack(data_train_tiles) - np.save(out_directory + 'label_train_' + str(cnt), label_train) - np.save(out_directory + 'data_train_' + str(cnt), data_train) - num_train_samples = data_train.shape[0] - - label_valid_tiles = [] - label_train_tiles = [] - data_valid_tiles = [] - data_train_tiles = [] - - print(' num_train_samples, num_valid_samples, progress % : ', num_train_samples, num_valid_samples, int((f_cnt/num_files)*100)) - total_num_train_samples += num_train_samples - total_num_valid_samples += num_valid_samples - print('total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples) - - cnt += 1 - - print('** total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples) + # if (f_cnt % 5) == 0: + # num_valid_samples = 0 + # if len(data_valid_tiles) > 0: + # label_valid = np.stack(label_valid_tiles) + # data_valid = np.stack(data_valid_tiles) + # np.save(out_directory + 'data_valid_' + str(cnt), data_valid) + # np.save(out_directory + 'label_valid_' + str(cnt), label_valid) + # num_valid_samples = data_valid.shape[0] + # + # label_train = np.stack(label_train_tiles) + # data_train = np.stack(data_train_tiles) + # np.save(out_directory + 'label_train_' + str(cnt), label_train) + # np.save(out_directory + 'data_train_' + str(cnt), data_train) + # num_train_samples = data_train.shape[0] + # + # label_valid_tiles = [] + # label_train_tiles = [] + # data_valid_tiles = [] + # data_train_tiles = [] + # + # print(' num_train_samples, num_valid_samples, progress % : ', num_train_samples, num_valid_samples, int((f_cnt/num_files)*100)) + # total_num_train_samples += num_train_samples + # total_num_valid_samples += num_valid_samples + # print('total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples) + # + # cnt += 1 + # + # print('** total_num_train_samples, total_num_valid_samples: ', total_num_train_samples, total_num_valid_samples) # tile_width: Must be even! -- GitLab