Skip to content
Snippets Groups Projects
Commit 8dfb5745 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 6e02c66d
No related branches found
No related tags found
No related merge requests found
......@@ -693,6 +693,7 @@ def run_restore_static(directory, ckpt_dir, out_file=None):
def run_evaluate_static(in_file, out_file, ckpt_dir):
border = int((KERNEL_SIZE - 1) / 2)
h5f = h5py.File(in_file, 'r')
......@@ -705,6 +706,10 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
ylen, xlen = bt.shape
bt = bt[int(ylen/2):ylen, (int(xlen/2)-400):(int(xlen/2)+400)]
cld_opd_orig = get_grid_values_all(h5f, 'orig/' + label_param)
ylen, xlen = cld_opd_orig.shape
cld_opd_orig = cld_opd_orig[int(ylen/2):ylen, (int(xlen/2)-400):(int(xlen/2)+400)]
cld_opd = get_grid_values_all(h5f, 'super/' + label_param)
ylen, xlen = cld_opd.shape
cld_opd = cld_opd[int(ylen/2):ylen, (int(xlen/2)-800):(int(xlen/2)+800)]
......@@ -743,6 +748,13 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
cld_opd = smooth_2d(cld_opd)
cld_opd = normalize(cld_opd, label_param, mean_std_dct)
# cld_opd = np.where(np.isnan(cld_opd_orig), 0, cld_opd_orig)
# cld_opd = cld_opd[nn.slc_y_m, nn.slc_x_m]
# cld_opd = np.expand_dims(cld_opd, axis=0)
# cld_opd = nn.upsample(cld_opd)
# cld_opd = smooth_2d(cld_opd)
# cld_opd = normalize(cld_opd, label_param, mean_std_dct)
data = np.stack([bt, refl, cld_opd], axis=3)
h5f.close()
......@@ -752,14 +764,19 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
# cld_opd_sres = descale(cld_opd_sres, label_param, mean_std_dct)
_, ylen, xlen, _ = cld_opd_sres.shape
cld_opd_sres_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32)
refl_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32)
cld_opd_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32)
border = int((KERNEL_SIZE - 1) / 2)
cld_opd_sres_out[border:(border+ylen), border:(border+xlen)] = cld_opd_sres[0, :, :, 0]
refl_out[0:(ylen+2*border), 0:(xlen+2*border)] = refl[0, :, :]
cld_opd_out[0:(ylen+2*border), 0:(xlen+2*border)] = cld_opd[0, :, :]
# cld_opd_sres_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32)
# refl_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32)
# cld_opd_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32)
#
# cld_opd_sres_out[border:(border+ylen), border:(border+xlen)] = cld_opd_sres[0, :, :, 0]
# refl_out[0:(ylen+2*border), 0:(xlen+2*border)] = refl[0, :, :]
# cld_opd_out[0:(ylen+2*border), 0:(xlen+2*border)] = cld_opd[0, :, :]
cld_opd_sres_out = cld_opd_sres[0, :, :, 0]
refl_out = refl[0, border:(ylen-border), border:(xlen-border)]
cld_opd_out = cld_opd[0, border:(ylen-border), border:(xlen-border)]
cld_opd_hres = cld_opd_hres[border:(ylen-border), border:(xlen-border)]
print(cld_opd_sres_out.shape, refl_out.shape, cld_opd_out.shape, cld_opd_hres.shape)
refl_out = denormalize(refl_out, 'refl_0_65um_nom', mean_std_dct)
cld_opd_out = denormalize(cld_opd_out, label_param, mean_std_dct)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment