diff --git a/modules/deeplearning/cloud_opd_srcnn_viirs.py b/modules/deeplearning/cloud_opd_srcnn_viirs.py index 7fcab2dea1fc9f9ff4cab648f0ddb33ff9380b88..a29c9af43d2b74055b960324c74cf9e01a78524d 100644 --- a/modules/deeplearning/cloud_opd_srcnn_viirs.py +++ b/modules/deeplearning/cloud_opd_srcnn_viirs.py @@ -693,6 +693,7 @@ def run_restore_static(directory, ckpt_dir, out_file=None): def run_evaluate_static(in_file, out_file, ckpt_dir): + border = int((KERNEL_SIZE - 1) / 2) h5f = h5py.File(in_file, 'r') @@ -705,6 +706,10 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): ylen, xlen = bt.shape bt = bt[int(ylen/2):ylen, (int(xlen/2)-400):(int(xlen/2)+400)] + cld_opd_orig = get_grid_values_all(h5f, 'orig/' + label_param) + ylen, xlen = cld_opd_orig.shape + cld_opd_orig = cld_opd_orig[int(ylen/2):ylen, (int(xlen/2)-400):(int(xlen/2)+400)] + cld_opd = get_grid_values_all(h5f, 'super/' + label_param) ylen, xlen = cld_opd.shape cld_opd = cld_opd[int(ylen/2):ylen, (int(xlen/2)-800):(int(xlen/2)+800)] @@ -743,6 +748,13 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): cld_opd = smooth_2d(cld_opd) cld_opd = normalize(cld_opd, label_param, mean_std_dct) + # cld_opd = np.where(np.isnan(cld_opd_orig), 0, cld_opd_orig) + # cld_opd = cld_opd[nn.slc_y_m, nn.slc_x_m] + # cld_opd = np.expand_dims(cld_opd, axis=0) + # cld_opd = nn.upsample(cld_opd) + # cld_opd = smooth_2d(cld_opd) + # cld_opd = normalize(cld_opd, label_param, mean_std_dct) + data = np.stack([bt, refl, cld_opd], axis=3) h5f.close() @@ -752,14 +764,19 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): # cld_opd_sres = descale(cld_opd_sres, label_param, mean_std_dct) _, ylen, xlen, _ = cld_opd_sres.shape - cld_opd_sres_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32) - refl_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32) - cld_opd_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32) - - border = int((KERNEL_SIZE - 1) / 2) - cld_opd_sres_out[border:(border+ylen), border:(border+xlen)] = cld_opd_sres[0, :, :, 0] - refl_out[0:(ylen+2*border), 0:(xlen+2*border)] = refl[0, :, :] - cld_opd_out[0:(ylen+2*border), 0:(xlen+2*border)] = cld_opd[0, :, :] + # cld_opd_sres_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32) + # refl_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32) + # cld_opd_out = np.zeros((LEN_Y, LEN_X), dtype=np.float32) + # + # cld_opd_sres_out[border:(border+ylen), border:(border+xlen)] = cld_opd_sres[0, :, :, 0] + # refl_out[0:(ylen+2*border), 0:(xlen+2*border)] = refl[0, :, :] + # cld_opd_out[0:(ylen+2*border), 0:(xlen+2*border)] = cld_opd[0, :, :] + + cld_opd_sres_out = cld_opd_sres[0, :, :, 0] + refl_out = refl[0, border:(ylen-border), border:(xlen-border)] + cld_opd_out = cld_opd[0, border:(ylen-border), border:(xlen-border)] + cld_opd_hres = cld_opd_hres[border:(ylen-border), border:(xlen-border)] + print(cld_opd_sres_out.shape, refl_out.shape, cld_opd_out.shape, cld_opd_hres.shape) refl_out = denormalize(refl_out, 'refl_0_65um_nom', mean_std_dct) cld_opd_out = denormalize(cld_opd_out, label_param, mean_std_dct)