Skip to content
Snippets Groups Projects
Commit 8d5ee76e authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 7f1ca3ab
No related branches found
No related tags found
No related merge requests found
......@@ -324,6 +324,8 @@ class SRCNN:
tmp = tmp[:, slc_y, slc_x]
if param != 'refl_substddev_ch01':
tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
else:
tmp = np.where(np.isnan(tmp), 0, tmp)
data_norm.append(tmp)
tmp = input_label[:, label_idx_i, :, :]
......@@ -774,27 +776,25 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
h5f = h5py.File(in_file, 'r')
bt = get_grid_values_all(h5f, 'orig/temp_11_0um')
refl = get_grid_values_all(h5f, 'orig/refl_0_65um')
y_len, x_len = bt.shape[0], bt.shape[1]
lons = get_grid_values_all(h5f, 'orig/longitude')
lats = get_grid_values_all(h5f, 'orig/latitude')
bt = np.where(np.isnan(bt), 0, bt)
bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct)
refl = get_grid_values_all(h5f, 'super/refl_0_65um')
refl = np.where(np.isnan(refl), 0, refl)
refl = np.expand_dims(refl, axis=0)
refl_lo, refl_hi, refl_std, refl_avg = get_min_max_std(refl)
refl_lo = get_grid_values_all(h5f, 'orig/refl_submin_ch01')
refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct)
refl_hi = get_grid_values_all(h5f, 'orig/refl_submax_ch01')
refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct)
refl_avg = normalize(refl_avg, 'refl_0_65um_nom', mean_std_dct)
refl_lo = np.squeeze(refl_lo)
refl_hi = np.squeeze(refl_hi)
refl_avg = np.squeeze(refl_avg)
refl_std = get_grid_values_all(h5f, 'orig/refl_substdev_ch01')
refl_std = np.where(np.isnan(refl_std), 0, refl_std)
cp = get_grid_values_all(h5f, 'orig/'+label_param)
cp = np.where(np.isnan(cp), 0, cp)
data = np.stack([bt, refl_lo, refl_hi, refl_avg, cp], axis=2)
# data = np.stack([bt, refl, refl_lo, refl_hi, refl_std, cp], axis=2)
data = np.stack([bt, refl_lo, refl_hi, refl_std, cp], axis=2)
data = np.expand_dims(data, axis=0)
h5f.close()
......@@ -808,12 +808,12 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
cld_frac_out[border:y_len - border, border:x_len - border] = cld_frac[0, :, :]
bt = denormalize(bt, 'temp_11_0um_nom', mean_std_dct)
refl_avg = denormalize(refl_avg, 'refl_0_65um_nom', mean_std_dct)
refl = denormalize(refl, 'refl_0_65um_nom', mean_std_dct)
var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um']
dims = ['num_params', 'y', 'x']
da = xr.DataArray(np.stack([cld_frac_out, bt, refl_avg], axis=0), dims=dims)
da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims)
da.assign_coords({
'num_params': var_names,
'lat': (['y', 'x'], lats),
......@@ -821,9 +821,9 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
})
if out_file is not None:
np.save(out_file, (cld_frac_out, bt, refl_avg, cp, lons, lats))
np.save(out_file, (cld_frac_out, bt, refl, cp, lons, lats))
else:
return [cld_frac_out, bt, refl_avg, cp, lons, lats]
return [cld_frac_out, bt, refl, cp, lons, lats]
def analyze_3cat(file):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment