From 8d5ee76e76ee1fd5492ef25ce485b1832783388d Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Mon, 15 May 2023 11:18:43 -0500 Subject: [PATCH] snapshot... --- .../deeplearning/cloud_fraction_fcn_abi.py | 26 +++++++++---------- 1 file changed, 13 insertions(+), 13 deletions(-) diff --git a/modules/deeplearning/cloud_fraction_fcn_abi.py b/modules/deeplearning/cloud_fraction_fcn_abi.py index b25cab83..afdf02cd 100644 --- a/modules/deeplearning/cloud_fraction_fcn_abi.py +++ b/modules/deeplearning/cloud_fraction_fcn_abi.py @@ -324,6 +324,8 @@ class SRCNN: tmp = tmp[:, slc_y, slc_x] if param != 'refl_substddev_ch01': tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) + else: + tmp = np.where(np.isnan(tmp), 0, tmp) data_norm.append(tmp) tmp = input_label[:, label_idx_i, :, :] @@ -774,27 +776,25 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): h5f = h5py.File(in_file, 'r') bt = get_grid_values_all(h5f, 'orig/temp_11_0um') + refl = get_grid_values_all(h5f, 'orig/refl_0_65um') y_len, x_len = bt.shape[0], bt.shape[1] lons = get_grid_values_all(h5f, 'orig/longitude') lats = get_grid_values_all(h5f, 'orig/latitude') bt = np.where(np.isnan(bt), 0, bt) bt = normalize(bt, 'temp_11_0um_nom', mean_std_dct) - refl = get_grid_values_all(h5f, 'super/refl_0_65um') - refl = np.where(np.isnan(refl), 0, refl) - refl = np.expand_dims(refl, axis=0) - refl_lo, refl_hi, refl_std, refl_avg = get_min_max_std(refl) + refl_lo = get_grid_values_all(h5f, 'orig/refl_submin_ch01') refl_lo = normalize(refl_lo, 'refl_0_65um_nom', mean_std_dct) + refl_hi = get_grid_values_all(h5f, 'orig/refl_submax_ch01') refl_hi = normalize(refl_hi, 'refl_0_65um_nom', mean_std_dct) - refl_avg = normalize(refl_avg, 'refl_0_65um_nom', mean_std_dct) - refl_lo = np.squeeze(refl_lo) - refl_hi = np.squeeze(refl_hi) - refl_avg = np.squeeze(refl_avg) + refl_std = get_grid_values_all(h5f, 'orig/refl_substdev_ch01') + refl_std = np.where(np.isnan(refl_std), 0, refl_std) cp = get_grid_values_all(h5f, 'orig/'+label_param) cp = np.where(np.isnan(cp), 0, cp) - data = np.stack([bt, refl_lo, refl_hi, refl_avg, cp], axis=2) + # data = np.stack([bt, refl, refl_lo, refl_hi, refl_std, cp], axis=2) + data = np.stack([bt, refl_lo, refl_hi, refl_std, cp], axis=2) data = np.expand_dims(data, axis=0) h5f.close() @@ -808,12 +808,12 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): cld_frac_out[border:y_len - border, border:x_len - border] = cld_frac[0, :, :] bt = denormalize(bt, 'temp_11_0um_nom', mean_std_dct) - refl_avg = denormalize(refl_avg, 'refl_0_65um_nom', mean_std_dct) + refl = denormalize(refl, 'refl_0_65um_nom', mean_std_dct) var_names = ['cloud_fraction', 'temp_11_0um', 'refl_0_65um'] dims = ['num_params', 'y', 'x'] - da = xr.DataArray(np.stack([cld_frac_out, bt, refl_avg], axis=0), dims=dims) + da = xr.DataArray(np.stack([cld_frac_out, bt, refl], axis=0), dims=dims) da.assign_coords({ 'num_params': var_names, 'lat': (['y', 'x'], lats), @@ -821,9 +821,9 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): }) if out_file is not None: - np.save(out_file, (cld_frac_out, bt, refl_avg, cp, lons, lats)) + np.save(out_file, (cld_frac_out, bt, refl, cp, lons, lats)) else: - return [cld_frac_out, bt, refl_avg, cp, lons, lats] + return [cld_frac_out, bt, refl, cp, lons, lats] def analyze_3cat(file): -- GitLab