Skip to content
Snippets Groups Projects
Commit 805beacb authored by tomrink's avatar tomrink
Browse files

snapshot

parent 02fb2cf7
No related branches found
No related tags found
No related merge requests found
...@@ -211,7 +211,7 @@ class ESPCN: ...@@ -211,7 +211,7 @@ class ESPCN:
self.n_chans = 1 self.n_chans = 1
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
# self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans))
# self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans)) # self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans))
self.inputs.append(self.X_img) self.inputs.append(self.X_img)
...@@ -235,12 +235,14 @@ class ESPCN: ...@@ -235,12 +235,14 @@ class ESPCN:
data = np.concatenate(label_s) data = np.concatenate(label_s)
label = np.concatenate(label_s) label = np.concatenate(label_s)
label = label[:, label_idx, :, :] # label = label[:, label_idx, :, :]
label = label[:, label_idx, 4:68, 4:68]
label = np.expand_dims(label, axis=3) label = np.expand_dims(label, axis=3)
data = data[:, data_idx, :, :] data = data[:, data_idx, :, :]
data = np.expand_dims(data, axis=3) data = np.expand_dims(data, axis=3)
data = tf.image.resize(data, (32, 32)).numpy() # data = tf.image.resize(data, (32, 32)).numpy()
data = tf.image.resize(data, (36, 36)).numpy()
data = data.astype(np.float32) data = data.astype(np.float32)
label = label.astype(np.float32) label = label.astype(np.float32)
...@@ -381,8 +383,8 @@ class ESPCN: ...@@ -381,8 +383,8 @@ class ESPCN:
input_2d = self.inputs[0] input_2d = self.inputs[0]
print('input: ', input_2d.shape) print('input: ', input_2d.shape)
# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d)
conv = input_2d # conv = input_2d
print('input: ', conv.shape) print('input: ', conv.shape)
skip = conv skip = conv
...@@ -394,7 +396,7 @@ class ESPCN: ...@@ -394,7 +396,7 @@ class ESPCN:
if do_batch_norm: if do_batch_norm:
conv = tf.keras.layers.BatchNormalization()(conv) conv = tf.keras.layers.BatchNormalization()(conv)
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
print(conv.shape) print(conv.shape)
if do_drop_out: if do_drop_out:
...@@ -439,6 +441,9 @@ class ESPCN: ...@@ -439,6 +441,9 @@ class ESPCN:
conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
print(conv.shape) print(conv.shape)
conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
print(conv.shape)
#self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=tf.nn.sigmoid)(conv) #self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=tf.nn.sigmoid)(conv)
self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability')(conv) self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability')(conv)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment