diff --git a/modules/deeplearning/espcn.py b/modules/deeplearning/espcn.py index 36e529040d52357faf211b0a6ae588008481b38f..773d2108dd4729cb3de143a87be63e402ef7819a 100644 --- a/modules/deeplearning/espcn.py +++ b/modules/deeplearning/espcn.py @@ -211,7 +211,7 @@ class ESPCN: self.n_chans = 1 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) - # self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) + self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans)) # self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans)) self.inputs.append(self.X_img) @@ -235,12 +235,14 @@ class ESPCN: data = np.concatenate(label_s) label = np.concatenate(label_s) - label = label[:, label_idx, :, :] + # label = label[:, label_idx, :, :] + label = label[:, label_idx, 4:68, 4:68] label = np.expand_dims(label, axis=3) data = data[:, data_idx, :, :] data = np.expand_dims(data, axis=3) - data = tf.image.resize(data, (32, 32)).numpy() + # data = tf.image.resize(data, (32, 32)).numpy() + data = tf.image.resize(data, (36, 36)).numpy() data = data.astype(np.float32) label = label.astype(np.float32) @@ -381,8 +383,8 @@ class ESPCN: input_2d = self.inputs[0] print('input: ', input_2d.shape) - # conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d) - conv = input_2d + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d) + # conv = input_2d print('input: ', conv.shape) skip = conv @@ -394,7 +396,7 @@ class ESPCN: if do_batch_norm: conv = tf.keras.layers.BatchNormalization()(conv) - conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) print(conv.shape) if do_drop_out: @@ -439,6 +441,9 @@ class ESPCN: conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) print(conv.shape) + conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) + print(conv.shape) + #self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=tf.nn.sigmoid)(conv) self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability')(conv)