Skip to content
Snippets Groups Projects
Commit 7f8db191 authored by tomrink's avatar tomrink
Browse files

minor

parent f8b1f0f9
No related branches found
No related tags found
No related merge requests found
......@@ -408,27 +408,11 @@ class SRCNN:
self.initial_learning_rate = initial_learning_rate
def build_evaluation(self):
#self.train_loss = tf.keras.metrics.Mean(name='train_loss')
#self.test_loss = tf.keras.metrics.Mean(name='test_loss')
self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy')
self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy')
self.train_loss = tf.keras.metrics.Mean(name='train_loss')
self.test_loss = tf.keras.metrics.Mean(name='test_loss')
# if NumClasses == 2:
# self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
# self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
# self.test_auc = tf.keras.metrics.AUC(name='test_auc')
# self.test_recall = tf.keras.metrics.Recall(name='test_recall')
# self.test_precision = tf.keras.metrics.Precision(name='test_precision')
# self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg')
# self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos')
# self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg')
# self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos')
# else:
# self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
# self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
@tf.function
def train_step(self, mini_batch):
inputs = [mini_batch[0]]
......@@ -459,14 +443,6 @@ class SRCNN:
self.test_loss(t_loss)
self.test_accuracy(labels, pred)
# if NumClasses == 2:
# self.test_auc(labels, pred)
# self.test_recall(labels, pred)
# self.test_precision(labels, pred)
# self.test_true_neg(labels, pred)
# self.test_true_pos(labels, pred)
# self.test_false_neg(labels, pred)
# self.test_false_pos(labels, pred)
def predict(self, mini_batch):
inputs = [mini_batch[0]]
......@@ -483,14 +459,6 @@ class SRCNN:
def reset_test_metrics(self):
self.test_loss.reset_states()
self.test_accuracy.reset_states()
# if NumClasses == 2:
# self.test_auc.reset_states()
# self.test_recall.reset_states()
# self.test_precision.reset_states()
# self.test_true_neg.reset_states()
# self.test_true_pos.reset_states()
# self.test_false_neg.reset_states()
# self.test_false_pos.reset_states()
def get_metrics(self):
recall = self.test_recall.result()
......@@ -570,14 +538,6 @@ class SRCNN:
with self.writer_valid.as_default():
tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
# if NumClasses == 2:
# tf.summary.scalar('auc_val', self.test_auc.result(), step=step)
# tf.summary.scalar('recall_val', self.test_recall.result(), step=step)
# tf.summary.scalar('prec_val', self.test_precision.result(), step=step)
# tf.summary.scalar('f1_val', f1, step=step)
# tf.summary.scalar('mcc_val', mcc, step=step)
# tf.summary.scalar('num_train_steps', step, step=step)
# tf.summary.scalar('num_epochs', epoch, step=step)
with self.writer_train_valid_loss.as_default():
tf.summary.scalar('loss_trn', loss.numpy(), step=step)
......@@ -605,25 +565,11 @@ class SRCNN:
self.test_step(mini_batch)
print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
# if NumClasses == 2:
# f1, mcc = self.get_metrics()
# print('loss, acc, recall, precision, auc, f1, mcc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
# self.test_recall.result().numpy(), self.test_precision.result().numpy(), self.test_auc.result().numpy(), f1.numpy(), mcc.numpy())
# else:
# print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
print('------------------------------------------------------')
tst_loss = self.test_loss.result().numpy()
if tst_loss < best_test_loss:
best_test_loss = tst_loss
# if NumClasses == 2:
# best_test_acc = self.test_accuracy.result().numpy()
# best_test_recall = self.test_recall.result().numpy()
# best_test_precision = self.test_precision.result().numpy()
# best_test_auc = self.test_auc.result().numpy()
# best_test_f1 = f1.numpy()
# best_test_mcc = mcc.numpy()
ckpt_manager.save()
if EARLY_STOP and es.check_stop(tst_loss):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment