From 7f8db191fb15e637b87210ef8ee4fc0397b67ad2 Mon Sep 17 00:00:00 2001
From: tomrink <rink@ssec.wisc.edu>
Date: Thu, 18 Aug 2022 15:44:58 -0500
Subject: [PATCH] minor

---
 modules/deeplearning/srcnn.py | 54 -----------------------------------
 1 file changed, 54 deletions(-)

diff --git a/modules/deeplearning/srcnn.py b/modules/deeplearning/srcnn.py
index 6b56b7af..f4985fb9 100644
--- a/modules/deeplearning/srcnn.py
+++ b/modules/deeplearning/srcnn.py
@@ -408,27 +408,11 @@ class SRCNN:
         self.initial_learning_rate = initial_learning_rate
 
     def build_evaluation(self):
-        #self.train_loss = tf.keras.metrics.Mean(name='train_loss')
-        #self.test_loss = tf.keras.metrics.Mean(name='test_loss')
         self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy')
         self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy')
         self.train_loss = tf.keras.metrics.Mean(name='train_loss')
         self.test_loss = tf.keras.metrics.Mean(name='test_loss')
 
-        # if NumClasses == 2:
-        #     self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
-        #     self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
-        #     self.test_auc = tf.keras.metrics.AUC(name='test_auc')
-        #     self.test_recall = tf.keras.metrics.Recall(name='test_recall')
-        #     self.test_precision = tf.keras.metrics.Precision(name='test_precision')
-        #     self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg')
-        #     self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos')
-        #     self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg')
-        #     self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos')
-        # else:
-        #     self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
-        #     self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
-
     @tf.function
     def train_step(self, mini_batch):
         inputs = [mini_batch[0]]
@@ -459,14 +443,6 @@ class SRCNN:
 
         self.test_loss(t_loss)
         self.test_accuracy(labels, pred)
-        # if NumClasses == 2:
-        #     self.test_auc(labels, pred)
-        #     self.test_recall(labels, pred)
-        #     self.test_precision(labels, pred)
-        #     self.test_true_neg(labels, pred)
-        #     self.test_true_pos(labels, pred)
-        #     self.test_false_neg(labels, pred)
-        #     self.test_false_pos(labels, pred)
 
     def predict(self, mini_batch):
         inputs = [mini_batch[0]]
@@ -483,14 +459,6 @@ class SRCNN:
     def reset_test_metrics(self):
         self.test_loss.reset_states()
         self.test_accuracy.reset_states()
-        # if NumClasses == 2:
-        #     self.test_auc.reset_states()
-        #     self.test_recall.reset_states()
-        #     self.test_precision.reset_states()
-        #     self.test_true_neg.reset_states()
-        #     self.test_true_pos.reset_states()
-        #     self.test_false_neg.reset_states()
-        #     self.test_false_pos.reset_states()
 
     def get_metrics(self):
         recall = self.test_recall.result()
@@ -570,14 +538,6 @@ class SRCNN:
                         with self.writer_valid.as_default():
                             tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
                             tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
-                            # if NumClasses == 2:
-                            #     tf.summary.scalar('auc_val', self.test_auc.result(), step=step)
-                            #     tf.summary.scalar('recall_val', self.test_recall.result(), step=step)
-                            #     tf.summary.scalar('prec_val', self.test_precision.result(), step=step)
-                            #     tf.summary.scalar('f1_val', f1, step=step)
-                            #     tf.summary.scalar('mcc_val', mcc, step=step)
-                            #     tf.summary.scalar('num_train_steps', step, step=step)
-                            #     tf.summary.scalar('num_epochs', epoch, step=step)
 
                         with self.writer_train_valid_loss.as_default():
                             tf.summary.scalar('loss_trn', loss.numpy(), step=step)
@@ -605,25 +565,11 @@ class SRCNN:
                     self.test_step(mini_batch)
 
             print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
-            # if NumClasses == 2:
-            #     f1, mcc = self.get_metrics()
-            #     print('loss, acc, recall, precision, auc, f1, mcc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
-            #           self.test_recall.result().numpy(), self.test_precision.result().numpy(), self.test_auc.result().numpy(), f1.numpy(), mcc.numpy())
-            # else:
-            #     print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
             print('------------------------------------------------------')
 
             tst_loss = self.test_loss.result().numpy()
             if tst_loss < best_test_loss:
                 best_test_loss = tst_loss
-                # if NumClasses == 2:
-                #     best_test_acc = self.test_accuracy.result().numpy()
-                #     best_test_recall = self.test_recall.result().numpy()
-                #     best_test_precision = self.test_precision.result().numpy()
-                #     best_test_auc = self.test_auc.result().numpy()
-                #     best_test_f1 = f1.numpy()
-                #     best_test_mcc = mcc.numpy()
-
                 ckpt_manager.save()
 
             if EARLY_STOP and es.check_stop(tst_loss):
-- 
GitLab