Skip to content
Snippets Groups Projects
Commit 79f23aa1 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent c78cb363
No related branches found
No related tags found
No related merge requests found
...@@ -52,9 +52,9 @@ f.close() ...@@ -52,9 +52,9 @@ f.close()
mean_std_dct.update(mean_std_dct_l1b) mean_std_dct.update(mean_std_dct_l1b)
mean_std_dct.update(mean_std_dct_l2) mean_std_dct.update(mean_std_dct_l2)
emis_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_9um_nom', emis_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
'temp_6_7um_nom'] 'temp_6_7um_nom', 'temp_6_2um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom']
l2_params = ['cloud_fraction', 'cld_temp_acha', 'cld_press_acha'] l2_params = ['cloud_fraction', 'cld_temp_acha', 'cld_press_acha', 'cld_opd_acha', 'cld_reff_acha']
# -- Zero out params (Experimentation Only) ------------ # -- Zero out params (Experimentation Only) ------------
zero_out_params = ['cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp'] zero_out_params = ['cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
...@@ -181,7 +181,7 @@ class UNET: ...@@ -181,7 +181,7 @@ class UNET:
self.test_label_nda = None self.test_label_nda = None
# self.n_chans = len(self.train_params) # self.n_chans = len(self.train_params)
self.n_chans = 6 self.n_chans = 10
if TRIPLET: if TRIPLET:
self.n_chans *= 3 self.n_chans *= 3
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
...@@ -425,10 +425,12 @@ class UNET: ...@@ -425,10 +425,12 @@ class UNET:
momentum = 0.99 momentum = 0.99
# num_filters = len(self.train_params) * 4 # num_filters = len(self.train_params) * 4
num_filters = self.n_chans * 12 num_filters = self.n_chans * 4
input_2d = self.inputs[0] input_2d = self.inputs[0]
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=None)(input_2d) print('input: ', input_2d.shape)
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=7, strides=1, padding=padding, activation=None)(input_2d)
conv = conv[:, 6:70, 6:70, :]
print('Contracting Branch') print('Contracting Branch')
print('input: ', conv.shape) print('input: ', conv.shape)
skip = conv skip = conv
...@@ -527,8 +529,8 @@ class UNET: ...@@ -527,8 +529,8 @@ class UNET:
conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
print('8: ', conv.shape) print('8: ', conv.shape)
#conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) # conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv)
#print('9: ', conv.shape) # print('9: ', conv.shape)
# if NumClasses == 2: # if NumClasses == 2:
# activation = tf.nn.sigmoid # For binary # activation = tf.nn.sigmoid # For binary
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment