diff --git a/modules/deeplearning/unet_l1b_l2.py b/modules/deeplearning/unet_l1b_l2.py index aaae7b8ce82ad0d811ca1f1a7b2917239fada9e9..00948a9829b6c2c1b6ea25a6a40ead3bae3b5e07 100644 --- a/modules/deeplearning/unet_l1b_l2.py +++ b/modules/deeplearning/unet_l1b_l2.py @@ -52,9 +52,9 @@ f.close() mean_std_dct.update(mean_std_dct_l1b) mean_std_dct.update(mean_std_dct_l2) -emis_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_9um_nom', - 'temp_6_7um_nom'] -l2_params = ['cloud_fraction', 'cld_temp_acha', 'cld_press_acha'] +emis_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', + 'temp_6_7um_nom', 'temp_6_2um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom'] +l2_params = ['cloud_fraction', 'cld_temp_acha', 'cld_press_acha', 'cld_opd_acha', 'cld_reff_acha'] # -- Zero out params (Experimentation Only) ------------ zero_out_params = ['cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp'] @@ -181,7 +181,7 @@ class UNET: self.test_label_nda = None # self.n_chans = len(self.train_params) - self.n_chans = 6 + self.n_chans = 10 if TRIPLET: self.n_chans *= 3 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) @@ -425,10 +425,12 @@ class UNET: momentum = 0.99 # num_filters = len(self.train_params) * 4 - num_filters = self.n_chans * 12 + num_filters = self.n_chans * 4 input_2d = self.inputs[0] - conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=None)(input_2d) + print('input: ', input_2d.shape) + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=7, strides=1, padding=padding, activation=None)(input_2d) + conv = conv[:, 6:70, 6:70, :] print('Contracting Branch') print('input: ', conv.shape) skip = conv @@ -527,8 +529,8 @@ class UNET: conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) print('8: ', conv.shape) - #conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) - #print('9: ', conv.shape) + # conv = tf.keras.layers.Conv2DTranspose(num_filters, kernel_size=3, strides=2, padding=padding)(conv) + # print('9: ', conv.shape) # if NumClasses == 2: # activation = tf.nn.sigmoid # For binary