Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rink
python
Commits
7718854a
Commit
7718854a
authored
2 years ago
by
tomrink
Browse files
Options
Downloads
Patches
Plain Diff
snapshot...
parent
92e5ab31
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modules/deeplearning/srcnn_l1b_l2.py
+0
-91
0 additions, 91 deletions
modules/deeplearning/srcnn_l1b_l2.py
with
0 additions
and
91 deletions
modules/deeplearning/srcnn_l1b_l2.py
+
0
−
91
View file @
7718854a
...
@@ -314,70 +314,6 @@ class SRCNN:
...
@@ -314,70 +314,6 @@ class SRCNN:
def
get_in_mem_data_batch_test
(
self
,
idxs
):
def
get_in_mem_data_batch_test
(
self
,
idxs
):
return
self
.
get_in_mem_data_batch
(
idxs
,
False
)
return
self
.
get_in_mem_data_batch
(
idxs
,
False
)
def
get_in_mem_data_batch_eval
(
self
,
idxs
):
in_file
=
'
/home/rink/data/clavrx_snpp_day/clavrx_VNP02MOD.A2019017.1600.001.2019017214117.uwssec.highres.nc.level2.nc
'
N
=
8
slc_x
=
slice
(
2
,
N
*
128
+
4
)
slc_y
=
slice
(
2
,
N
*
128
+
4
)
slc_x_2
=
slice
(
1
,
N
*
128
+
6
,
2
)
slc_y_2
=
slice
(
1
,
N
*
128
+
6
,
2
)
x_2
=
np
.
arange
(
int
((
N
*
128
)
/
2
)
+
3
)
y_2
=
np
.
arange
(
int
((
N
*
128
)
/
2
)
+
3
)
t
=
np
.
arange
(
0
,
int
((
N
*
128
)
/
2
)
+
3
,
0.5
)
s
=
np
.
arange
(
0
,
int
((
N
*
128
)
/
2
)
+
3
,
0.5
)
x_k
=
slice
(
1
,
N
*
128
+
3
)
y_k
=
slice
(
1
,
N
*
128
+
3
)
x_128
=
slice
(
3
,
N
*
128
+
3
)
y_128
=
slice
(
3
,
N
*
128
+
3
)
sub_y
,
sub_x
=
(
N
*
128
)
+
10
,
(
N
*
128
)
+
10
y_0
,
x_0
,
=
2432
-
int
(
sub_y
/
2
),
2432
-
int
(
sub_x
/
2
)
h5f
=
h5py
.
File
(
in_file
,
'
r
'
)
grd_a
=
get_grid_values_all
(
h5f
,
'
temp_11_0um_nom
'
)
grd_a
=
grd_a
[
y_0
:
y_0
+
sub_y
,
x_0
:
x_0
+
sub_x
]
grd_a
=
grd_a
.
copy
()
grd_a
=
np
.
where
(
np
.
isnan
(
grd_a
),
0
,
grd_a
)
hr_grd_a
=
grd_a
.
copy
()
hr_grd_a
=
hr_grd_a
[
y_128
,
x_128
]
grd_a
=
grd_a
[
slc_y_2
,
slc_x_2
]
grd_a
=
resample_2d_linear_one
(
x_2
,
y_2
,
grd_a
,
t
,
s
)
grd_a
=
grd_a
[
y_k
,
x_k
]
grd_a
=
normalize
(
grd_a
,
'
temp_11_0um_nom
'
,
mean_std_dct
)
#
# grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom')
# grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x]
# grd_b = grd_b[y_130, x_130]
# refl = grd_b
# grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct)
grd_c
=
get_grid_values_all
(
h5f
,
label_param
)
grd_c
=
grd_c
[
y_0
:
y_0
+
sub_y
,
x_0
:
x_0
+
sub_x
]
hr_grd_c
=
grd_c
.
copy
()
hr_grd_c
=
hr_grd_c
[
y_128
,
x_128
]
grd_c
=
np
.
where
(
np
.
isnan
(
grd_c
),
0
,
grd_c
)
grd_c
=
grd_c
.
copy
()
grd_c
=
grd_c
[
slc_y_2
,
slc_x_2
]
grd_c
=
resample_2d_linear_one
(
x_2
,
y_2
,
grd_c
,
t
,
s
)
grd_c
=
grd_c
[
y_k
,
x_k
]
if
label_param
!=
'
cloud_probability
'
:
grd_c
=
normalize
(
grd_c
,
label_param
,
mean_std_dct
)
# data = np.stack([grd_a, grd_b, grd_c], axis=2)
# data = np.stack([grd_a, grd_c], axis=2)
data
=
np
.
stack
([
grd_c
],
axis
=
2
)
data
=
np
.
expand_dims
(
data
,
axis
=
0
)
data
=
data
.
astype
(
np
.
float32
)
h5f
.
close
()
return
data
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
int32
)])
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
int32
)])
def
data_function
(
self
,
indexes
):
def
data_function
(
self
,
indexes
):
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_train
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
])
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_train
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
])
...
@@ -388,11 +324,6 @@ class SRCNN:
...
@@ -388,11 +324,6 @@ class SRCNN:
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_test
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
])
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_test
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
])
return
out
return
out
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
int32
)])
def
data_function_evaluate
(
self
,
indexes
):
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_eval
,
[
indexes
],
[
tf
.
float32
])
return
out
def
get_train_dataset
(
self
,
indexes
):
def
get_train_dataset
(
self
,
indexes
):
indexes
=
list
(
indexes
)
indexes
=
list
(
indexes
)
...
@@ -414,13 +345,6 @@ class SRCNN:
...
@@ -414,13 +345,6 @@ class SRCNN:
dataset
=
dataset
.
cache
()
dataset
=
dataset
.
cache
()
self
.
test_dataset
=
dataset
self
.
test_dataset
=
dataset
def
get_evaluate_dataset
(
self
,
indexes
):
indexes
=
list
(
indexes
)
dataset
=
tf
.
data
.
Dataset
.
from_tensor_slices
(
indexes
)
dataset
=
dataset
.
map
(
self
.
data_function_evaluate
,
num_parallel_calls
=
8
)
self
.
eval_dataset
=
dataset
def
setup_pipeline
(
self
,
train_data_files
,
test_data_files
,
num_train_samples
):
def
setup_pipeline
(
self
,
train_data_files
,
test_data_files
,
num_train_samples
):
self
.
train_data_files
=
train_data_files
self
.
train_data_files
=
train_data_files
...
@@ -449,11 +373,6 @@ class SRCNN:
...
@@ -449,11 +373,6 @@ class SRCNN:
self
.
get_test_dataset
(
tst_idxs
)
self
.
get_test_dataset
(
tst_idxs
)
print
(
'
setup_test_pipeline: Done
'
)
print
(
'
setup_test_pipeline: Done
'
)
def
setup_eval_pipeline
(
self
,
filename
):
idxs
=
[
0
]
self
.
num_data_samples
=
1
self
.
get_evaluate_dataset
(
idxs
)
def
build_srcnn
(
self
,
do_drop_out
=
False
,
do_batch_norm
=
False
,
drop_rate
=
0.5
,
factor
=
2
):
def
build_srcnn
(
self
,
do_drop_out
=
False
,
do_batch_norm
=
False
,
drop_rate
=
0.5
,
factor
=
2
):
print
(
'
build_cnn
'
)
print
(
'
build_cnn
'
)
padding
=
"
SAME
"
padding
=
"
SAME
"
...
@@ -731,13 +650,6 @@ class SRCNN:
...
@@ -731,13 +650,6 @@ class SRCNN:
self
.
reset_test_metrics
()
self
.
reset_test_metrics
()
# for data in self.eval_dataset:
# pred = self.model([data], training=False)
# pred = pred.numpy()
# if label_param != 'cloud_probability':
# pred = denormalize(pred, label_param, mean_std_dct)
# print(pred.min(), pred.max())
pred
=
self
.
model
([
data
],
training
=
False
)
pred
=
self
.
model
([
data
],
training
=
False
)
self
.
test_probs
=
pred
self
.
test_probs
=
pred
pred
=
pred
.
numpy
()
pred
=
pred
.
numpy
()
...
@@ -749,8 +661,6 @@ class SRCNN:
...
@@ -749,8 +661,6 @@ class SRCNN:
def
run
(
self
,
directory
,
ckpt_dir
=
None
,
num_data_samples
=
50000
):
def
run
(
self
,
directory
,
ckpt_dir
=
None
,
num_data_samples
=
50000
):
train_data_files
=
glob
.
glob
(
directory
+
'
data_train_*.npy
'
)
train_data_files
=
glob
.
glob
(
directory
+
'
data_train_*.npy
'
)
valid_data_files
=
glob
.
glob
(
directory
+
'
data_valid_*.npy
'
)
valid_data_files
=
glob
.
glob
(
directory
+
'
data_valid_*.npy
'
)
# train_data_files = train_data_files[::2]
# valid_data_files = valid_data_files[::2]
self
.
setup_pipeline
(
train_data_files
,
valid_data_files
,
num_data_samples
)
self
.
setup_pipeline
(
train_data_files
,
valid_data_files
,
num_data_samples
)
self
.
build_model
()
self
.
build_model
()
...
@@ -770,7 +680,6 @@ class SRCNN:
...
@@ -770,7 +680,6 @@ class SRCNN:
def
run_evaluate
(
self
,
data
,
ckpt_dir
):
def
run_evaluate
(
self
,
data
,
ckpt_dir
):
data
=
tf
.
convert_to_tensor
(
data
,
dtype
=
tf
.
float32
)
data
=
tf
.
convert_to_tensor
(
data
,
dtype
=
tf
.
float32
)
self
.
num_data_samples
=
80000
self
.
num_data_samples
=
80000
# self.setup_eval_pipeline('clavrx_VNP02MOD.A2019017.1600.001.2019017214117.uwssec.highres.nc.level2.nc')
self
.
build_model
()
self
.
build_model
()
self
.
build_training
()
self
.
build_training
()
self
.
build_evaluation
()
self
.
build_evaluation
()
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment