From 7718854a6eaa88490ea5265c4e770e77beb9da7a Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Thu, 5 Jan 2023 14:57:16 -0600 Subject: [PATCH] snapshot... --- modules/deeplearning/srcnn_l1b_l2.py | 91 ---------------------------- 1 file changed, 91 deletions(-) diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py index 8431a6c7..57788cc9 100644 --- a/modules/deeplearning/srcnn_l1b_l2.py +++ b/modules/deeplearning/srcnn_l1b_l2.py @@ -314,70 +314,6 @@ class SRCNN: def get_in_mem_data_batch_test(self, idxs): return self.get_in_mem_data_batch(idxs, False) - def get_in_mem_data_batch_eval(self, idxs): - in_file = '/home/rink/data/clavrx_snpp_day/clavrx_VNP02MOD.A2019017.1600.001.2019017214117.uwssec.highres.nc.level2.nc' - N = 8 - - slc_x = slice(2, N * 128 + 4) - slc_y = slice(2, N * 128 + 4) - slc_x_2 = slice(1, N * 128 + 6, 2) - slc_y_2 = slice(1, N * 128 + 6, 2) - x_2 = np.arange(int((N * 128) / 2) + 3) - y_2 = np.arange(int((N * 128) / 2) + 3) - t = np.arange(0, int((N * 128) / 2) + 3, 0.5) - s = np.arange(0, int((N * 128) / 2) + 3, 0.5) - x_k = slice(1, N * 128 + 3) - y_k = slice(1, N * 128 + 3) - x_128 = slice(3, N * 128 + 3) - y_128 = slice(3, N * 128 + 3) - - sub_y, sub_x = (N * 128) + 10, (N * 128) + 10 - y_0, x_0, = 2432 - int(sub_y / 2), 2432 - int(sub_x / 2) - - h5f = h5py.File(in_file, 'r') - - grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom') - grd_a = grd_a[y_0:y_0 + sub_y, x_0:x_0 + sub_x] - grd_a = grd_a.copy() - grd_a = np.where(np.isnan(grd_a), 0, grd_a) - hr_grd_a = grd_a.copy() - hr_grd_a = hr_grd_a[y_128, x_128] - grd_a = grd_a[slc_y_2, slc_x_2] - grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s) - grd_a = grd_a[y_k, x_k] - grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct) - # - # grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom') - # grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x] - # grd_b = grd_b[y_130, x_130] - # refl = grd_b - # grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct) - - grd_c = get_grid_values_all(h5f, label_param) - grd_c = grd_c[y_0:y_0 + sub_y, x_0:x_0 + sub_x] - - hr_grd_c = grd_c.copy() - hr_grd_c = hr_grd_c[y_128, x_128] - - grd_c = np.where(np.isnan(grd_c), 0, grd_c) - grd_c = grd_c.copy() - grd_c = grd_c[slc_y_2, slc_x_2] - grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s) - grd_c = grd_c[y_k, x_k] - - if label_param != 'cloud_probability': - grd_c = normalize(grd_c, label_param, mean_std_dct) - - # data = np.stack([grd_a, grd_b, grd_c], axis=2) - # data = np.stack([grd_a, grd_c], axis=2) - data = np.stack([grd_c], axis=2) - data = np.expand_dims(data, axis=0) - data = data.astype(np.float32) - - h5f.close() - - return data - @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) def data_function(self, indexes): out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32]) @@ -388,11 +324,6 @@ class SRCNN: out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32]) return out - @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)]) - def data_function_evaluate(self, indexes): - out = tf.numpy_function(self.get_in_mem_data_batch_eval, [indexes], [tf.float32]) - return out - def get_train_dataset(self, indexes): indexes = list(indexes) @@ -414,13 +345,6 @@ class SRCNN: dataset = dataset.cache() self.test_dataset = dataset - def get_evaluate_dataset(self, indexes): - indexes = list(indexes) - - dataset = tf.data.Dataset.from_tensor_slices(indexes) - dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8) - self.eval_dataset = dataset - def setup_pipeline(self, train_data_files, test_data_files, num_train_samples): self.train_data_files = train_data_files @@ -449,11 +373,6 @@ class SRCNN: self.get_test_dataset(tst_idxs) print('setup_test_pipeline: Done') - def setup_eval_pipeline(self, filename): - idxs = [0] - self.num_data_samples = 1 - self.get_evaluate_dataset(idxs) - def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2): print('build_cnn') padding = "SAME" @@ -731,13 +650,6 @@ class SRCNN: self.reset_test_metrics() - # for data in self.eval_dataset: - # pred = self.model([data], training=False) - # pred = pred.numpy() - # if label_param != 'cloud_probability': - # pred = denormalize(pred, label_param, mean_std_dct) - # print(pred.min(), pred.max()) - pred = self.model([data], training=False) self.test_probs = pred pred = pred.numpy() @@ -749,8 +661,6 @@ class SRCNN: def run(self, directory, ckpt_dir=None, num_data_samples=50000): train_data_files = glob.glob(directory+'data_train_*.npy') valid_data_files = glob.glob(directory+'data_valid_*.npy') - # train_data_files = train_data_files[::2] - # valid_data_files = valid_data_files[::2] self.setup_pipeline(train_data_files, valid_data_files, num_data_samples) self.build_model() @@ -770,7 +680,6 @@ class SRCNN: def run_evaluate(self, data, ckpt_dir): data = tf.convert_to_tensor(data, dtype=tf.float32) self.num_data_samples = 80000 - # self.setup_eval_pipeline('clavrx_VNP02MOD.A2019017.1600.001.2019017214117.uwssec.highres.nc.level2.nc') self.build_model() self.build_training() self.build_evaluation() -- GitLab