From 7718854a6eaa88490ea5265c4e770e77beb9da7a Mon Sep 17 00:00:00 2001
From: tomrink <rink@ssec.wisc.edu>
Date: Thu, 5 Jan 2023 14:57:16 -0600
Subject: [PATCH] snapshot...

---
 modules/deeplearning/srcnn_l1b_l2.py | 91 ----------------------------
 1 file changed, 91 deletions(-)

diff --git a/modules/deeplearning/srcnn_l1b_l2.py b/modules/deeplearning/srcnn_l1b_l2.py
index 8431a6c7..57788cc9 100644
--- a/modules/deeplearning/srcnn_l1b_l2.py
+++ b/modules/deeplearning/srcnn_l1b_l2.py
@@ -314,70 +314,6 @@ class SRCNN:
     def get_in_mem_data_batch_test(self, idxs):
         return self.get_in_mem_data_batch(idxs, False)
 
-    def get_in_mem_data_batch_eval(self, idxs):
-        in_file = '/home/rink/data/clavrx_snpp_day/clavrx_VNP02MOD.A2019017.1600.001.2019017214117.uwssec.highres.nc.level2.nc'
-        N = 8
-
-        slc_x = slice(2, N * 128 + 4)
-        slc_y = slice(2, N * 128 + 4)
-        slc_x_2 = slice(1, N * 128 + 6, 2)
-        slc_y_2 = slice(1, N * 128 + 6, 2)
-        x_2 = np.arange(int((N * 128) / 2) + 3)
-        y_2 = np.arange(int((N * 128) / 2) + 3)
-        t = np.arange(0, int((N * 128) / 2) + 3, 0.5)
-        s = np.arange(0, int((N * 128) / 2) + 3, 0.5)
-        x_k = slice(1, N * 128 + 3)
-        y_k = slice(1, N * 128 + 3)
-        x_128 = slice(3, N * 128 + 3)
-        y_128 = slice(3, N * 128 + 3)
-
-        sub_y, sub_x = (N * 128) + 10, (N * 128) + 10
-        y_0, x_0, = 2432 - int(sub_y / 2), 2432 - int(sub_x / 2)
-
-        h5f = h5py.File(in_file, 'r')
-
-        grd_a = get_grid_values_all(h5f, 'temp_11_0um_nom')
-        grd_a = grd_a[y_0:y_0 + sub_y, x_0:x_0 + sub_x]
-        grd_a = grd_a.copy()
-        grd_a = np.where(np.isnan(grd_a), 0, grd_a)
-        hr_grd_a = grd_a.copy()
-        hr_grd_a = hr_grd_a[y_128, x_128]
-        grd_a = grd_a[slc_y_2, slc_x_2]
-        grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s)
-        grd_a = grd_a[y_k, x_k]
-        grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct)
-        #
-        # grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom')
-        # grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x]
-        # grd_b = grd_b[y_130, x_130]
-        # refl = grd_b
-        # grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct)
-
-        grd_c = get_grid_values_all(h5f, label_param)
-        grd_c = grd_c[y_0:y_0 + sub_y, x_0:x_0 + sub_x]
-
-        hr_grd_c = grd_c.copy()
-        hr_grd_c = hr_grd_c[y_128, x_128]
-
-        grd_c = np.where(np.isnan(grd_c), 0, grd_c)
-        grd_c = grd_c.copy()
-        grd_c = grd_c[slc_y_2, slc_x_2]
-        grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s)
-        grd_c = grd_c[y_k, x_k]
-
-        if label_param != 'cloud_probability':
-            grd_c = normalize(grd_c, label_param, mean_std_dct)
-
-        # data = np.stack([grd_a, grd_b, grd_c], axis=2)
-        # data = np.stack([grd_a, grd_c], axis=2)
-        data = np.stack([grd_c], axis=2)
-        data = np.expand_dims(data, axis=0)
-        data = data.astype(np.float32)
-
-        h5f.close()
-
-        return data
-
     @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
     def data_function(self, indexes):
         out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32])
@@ -388,11 +324,6 @@ class SRCNN:
         out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32])
         return out
 
-    @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
-    def data_function_evaluate(self, indexes):
-        out = tf.numpy_function(self.get_in_mem_data_batch_eval, [indexes], [tf.float32])
-        return out
-
     def get_train_dataset(self, indexes):
         indexes = list(indexes)
 
@@ -414,13 +345,6 @@ class SRCNN:
         dataset = dataset.cache()
         self.test_dataset = dataset
 
-    def get_evaluate_dataset(self, indexes):
-        indexes = list(indexes)
-
-        dataset = tf.data.Dataset.from_tensor_slices(indexes)
-        dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8)
-        self.eval_dataset = dataset
-
     def setup_pipeline(self, train_data_files, test_data_files, num_train_samples):
 
         self.train_data_files = train_data_files
@@ -449,11 +373,6 @@ class SRCNN:
         self.get_test_dataset(tst_idxs)
         print('setup_test_pipeline: Done')
 
-    def setup_eval_pipeline(self, filename):
-        idxs = [0]
-        self.num_data_samples = 1
-        self.get_evaluate_dataset(idxs)
-
     def build_srcnn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2):
         print('build_cnn')
         padding = "SAME"
@@ -731,13 +650,6 @@ class SRCNN:
 
         self.reset_test_metrics()
 
-        # for data in self.eval_dataset:
-        #     pred = self.model([data], training=False)
-        #     pred = pred.numpy()
-        #     if label_param != 'cloud_probability':
-        #         pred = denormalize(pred, label_param, mean_std_dct)
-        #         print(pred.min(), pred.max())
-
         pred = self.model([data], training=False)
         self.test_probs = pred
         pred = pred.numpy()
@@ -749,8 +661,6 @@ class SRCNN:
     def run(self, directory, ckpt_dir=None, num_data_samples=50000):
         train_data_files = glob.glob(directory+'data_train_*.npy')
         valid_data_files = glob.glob(directory+'data_valid_*.npy')
-        # train_data_files = train_data_files[::2]
-        # valid_data_files = valid_data_files[::2]
 
         self.setup_pipeline(train_data_files, valid_data_files, num_data_samples)
         self.build_model()
@@ -770,7 +680,6 @@ class SRCNN:
     def run_evaluate(self, data, ckpt_dir):
         data = tf.convert_to_tensor(data, dtype=tf.float32)
         self.num_data_samples = 80000
-        # self.setup_eval_pipeline('clavrx_VNP02MOD.A2019017.1600.001.2019017214117.uwssec.highres.nc.level2.nc')
         self.build_model()
         self.build_training()
         self.build_evaluation()
-- 
GitLab