Skip to content
Snippets Groups Projects
Commit 6332f7e4 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent fea21ce4
No related branches found
No related tags found
No related merge requests found
......@@ -114,6 +114,26 @@ def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.
return conv
def build_conv2d_block(conv, num_filters, activation, block_name, padding='SAME'):
with tf.name_scope(block_name):
skip = conv
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv)
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
skip = tf.keras.layers.BatchNormalization()(skip)
conv = conv + skip
conv = tf.keras.layers.LeakyReLU()(conv)
print(conv.shape)
return conv
def upsample_mean(grd):
bsize, ylen, xlen = grd.shape
up = np.zeros((bsize, ylen*2, xlen*2))
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment