From 6332f7e42aaad45eb6fc29439dd0ac92c1bd4ef6 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Tue, 23 Jan 2024 14:34:50 -0600 Subject: [PATCH] snapshot... --- .../cloud_fraction_fcn_abi_hkm_refl.py | 20 +++++++++++++++++++ 1 file changed, 20 insertions(+) diff --git a/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py b/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py index 704bfaf7..fd5a4f6d 100644 --- a/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py +++ b/modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py @@ -114,6 +114,26 @@ def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn. return conv +def build_conv2d_block(conv, num_filters, activation, block_name, padding='SAME'): + with tf.name_scope(block_name): + skip = conv + + conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv) + conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) + conv = tf.keras.layers.BatchNormalization()(conv) + print(conv.shape) + + skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) + skip = tf.keras.layers.MaxPool2D(padding=padding)(skip) + skip = tf.keras.layers.BatchNormalization()(skip) + + conv = conv + skip + conv = tf.keras.layers.LeakyReLU()(conv) + print(conv.shape) + + return conv + + def upsample_mean(grd): bsize, ylen, xlen = grd.shape up = np.zeros((bsize, ylen*2, xlen*2)) -- GitLab