Skip to content
Snippets Groups Projects
Commit 6088d693 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent c0aa4790
No related branches found
No related tags found
No related merge requests found
......@@ -59,7 +59,7 @@ label_param = 'cld_opd_dcomp'
# label_param = 'cloud_probability'
params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', label_param]
data_params = ['temp_11_0um_nom']
data_params = ['temp_11_0um_nom', 'refl_0_65um_nom']
# data_params = []
label_idx = params.index(label_param)
......@@ -730,23 +730,25 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
grd_a = np.where(np.isnan(grd_a), 0, grd_a)
hr_grd_a = grd_a.copy()
hr_grd_a = hr_grd_a[y_128, x_128]
grd_a = grd_a[slc_y_2, slc_x_2]
grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s)
grd_a = grd_a[y_k, x_k]
grd_a = grd_a[slc_y, slc_x]
# grd_a = grd_a[slc_y_2, slc_x_2]
# grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s)
# grd_a = grd_a[y_k, x_k]
grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct)
#
# grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom')
# grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x]
# grd_b = grd_b[y_130, x_130]
# refl = grd_b
# grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct)
# ------------------------------------------------------
grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom')
grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x]
grd_b = grd_b.copy()
grd_b = np.where(np.isnan(grd_b), 0, grd_b)
hr_grd_b = grd_b.copy()
hr_grd_b = hr_grd_b[y_128, x_128]
grd_b = grd_b[slc_y, slc_x]
grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct)
grd_c = get_grid_values_all(h5f, label_param)
grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x]
hr_grd_c = grd_c.copy()
hr_grd_c = hr_grd_c[y_128, x_128]
grd_c = np.where(np.isnan(grd_c), 0, grd_c)
grd_c = grd_c.copy()
# grd_c = smooth_2d_single(grd_c, sigma=1.0)
......@@ -756,9 +758,9 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
if label_param != 'cloud_probability':
grd_c = normalize(grd_c, label_param, mean_std_dct)
# data = np.stack([grd_a, grd_b, grd_c], axis=2)
data = np.stack([grd_a, grd_b, grd_c], axis=2)
# data = np.stack([grd_a, grd_c], axis=2)
data = np.stack([grd_c], axis=2)
# data = np.stack([grd_c], axis=2)
data = np.expand_dims(data, axis=0)
h5f.close()
......@@ -766,9 +768,9 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
nn = SRCNN()
out_sr = nn.run_evaluate(data, ckpt_dir)
if out_file is not None:
np.save(out_file, (out_sr[0, :, :, 0], hr_grd_a, hr_grd_c))
np.save(out_file, (out_sr[0, :, :, 0], hr_grd_a, hr_grd_b, hr_grd_c))
else:
return out_sr, hr_grd_a, hr_grd_c
return out_sr, hr_grd_a, hr_grd_b, hr_grd_c
def analyze(file='/Users/tomrink/cld_opd_out.npy'):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment