Skip to content
Snippets Groups Projects
Commit 6088d693 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent c0aa4790
No related merge requests found
......@@ -59,7 +59,7 @@ label_param = 'cld_opd_dcomp'
# label_param = 'cloud_probability'
params = ['temp_11_0um_nom', 'temp_12_0um_nom', 'refl_0_65um_nom', label_param]
data_params = ['temp_11_0um_nom']
data_params = ['temp_11_0um_nom', 'refl_0_65um_nom']
# data_params = []
label_idx = params.index(label_param)
......@@ -730,23 +730,25 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
grd_a = np.where(np.isnan(grd_a), 0, grd_a)
hr_grd_a = grd_a.copy()
hr_grd_a = hr_grd_a[y_128, x_128]
grd_a = grd_a[slc_y_2, slc_x_2]
grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s)
grd_a = grd_a[y_k, x_k]
grd_a = grd_a[slc_y, slc_x]
# grd_a = grd_a[slc_y_2, slc_x_2]
# grd_a = resample_2d_linear_one(x_2, y_2, grd_a, t, s)
# grd_a = grd_a[y_k, x_k]
grd_a = normalize(grd_a, 'temp_11_0um_nom', mean_std_dct)
#
# grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom')
# grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x]
# grd_b = grd_b[y_130, x_130]
# refl = grd_b
# grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct)
# ------------------------------------------------------
grd_b = get_grid_values_all(h5f, 'refl_0_65um_nom')
grd_b = grd_b[y_0:y_0+sub_y, x_0:x_0+sub_x]
grd_b = grd_b.copy()
grd_b = np.where(np.isnan(grd_b), 0, grd_b)
hr_grd_b = grd_b.copy()
hr_grd_b = hr_grd_b[y_128, x_128]
grd_b = grd_b[slc_y, slc_x]
grd_b = normalize(grd_b, 'refl_0_65um_nom', mean_std_dct)
grd_c = get_grid_values_all(h5f, label_param)
grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x]
hr_grd_c = grd_c.copy()
hr_grd_c = hr_grd_c[y_128, x_128]
grd_c = np.where(np.isnan(grd_c), 0, grd_c)
grd_c = grd_c.copy()
# grd_c = smooth_2d_single(grd_c, sigma=1.0)
......@@ -756,9 +758,9 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
if label_param != 'cloud_probability':
grd_c = normalize(grd_c, label_param, mean_std_dct)
# data = np.stack([grd_a, grd_b, grd_c], axis=2)
data = np.stack([grd_a, grd_b, grd_c], axis=2)
# data = np.stack([grd_a, grd_c], axis=2)
data = np.stack([grd_c], axis=2)
# data = np.stack([grd_c], axis=2)
data = np.expand_dims(data, axis=0)
h5f.close()
......@@ -766,9 +768,9 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
nn = SRCNN()
out_sr = nn.run_evaluate(data, ckpt_dir)
if out_file is not None:
np.save(out_file, (out_sr[0, :, :, 0], hr_grd_a, hr_grd_c))
np.save(out_file, (out_sr[0, :, :, 0], hr_grd_a, hr_grd_b, hr_grd_c))
else:
return out_sr, hr_grd_a, hr_grd_c
return out_sr, hr_grd_a, hr_grd_b, hr_grd_c
def analyze(file='/Users/tomrink/cld_opd_out.npy'):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment