Skip to content
Snippets Groups Projects
Commit 57769979 authored by tomrink's avatar tomrink
Browse files

minor

parent bf040f61
Branches
No related tags found
No related merge requests found
...@@ -1811,47 +1811,55 @@ def tiles_info(filename): ...@@ -1811,47 +1811,55 @@ def tiles_info(filename):
def analyze(preds_file, truth_file='/Users/tomrink/data/icing_ml/tiles_202109240000_202111212359_l2_test_v3_DAY.h5'): def analyze(preds_file, truth_file='/Users/tomrink/data/icing_ml/tiles_202109240000_202111212359_l2_test_v3_DAY.h5'):
h5f = h5py.File(truth_file, 'r') h5f = h5py.File(truth_file, 'r')
nda = h5f['flight_altitude'][:] nda = h5f['flight_altitude'][:]
iint = h5f['icing_intensity'][:]
cld_hgt = h5f['cld_height_acha'][:] cld_hgt = h5f['cld_height_acha'][:]
cld_dz = h5f['cld_geo_thick'][:] cld_dz = h5f['cld_geo_thick'][:]
cld_tmp = h5f['cld_temp_acha'][:] cld_tmp = h5f['cld_temp_acha'][:]
iint = np.where(iint == -1, 0, iint)
iint = np.where(iint != 0, 1, iint)
nda[np.logical_and(nda >= 0, nda < 2000)] = 0 nda[np.logical_and(nda >= 0, nda < 2000)] = 0
nda[np.logical_and(nda >= 2000, nda < 4000)] = 1 nda[np.logical_and(nda >= 2000, nda < 4000)] = 1
nda[np.logical_and(nda >= 4000, nda < 6000)] = 2 nda[np.logical_and(nda >= 4000, nda < 6000)] = 2
nda[np.logical_and(nda >= 6000, nda < 8000)] = 3 nda[np.logical_and(nda >= 6000, nda < 8000)] = 3
nda[np.logical_and(nda >= 8000, nda < 15000)] = 4 nda[np.logical_and(nda >= 8000, nda < 15000)] = 4
labels, prob_avg, cm_avg = pickle.load(open(preds_file, 'rb'))
print(np.sum(nda == 0), np.sum(nda == 1), np.sum(nda == 2), np.sum(nda == 3), np.sum(nda == 4)) print(np.sum(nda == 0), np.sum(nda == 1), np.sum(nda == 2), np.sum(nda == 3), np.sum(nda == 4))
print('---------------------------') print('---------------------------')
print('level 0: ') print('level 0: ')
print(np.nanmean(cld_dz[(nda == 0)]), np.nanmean(cld_hgt[(nda == 0)])) print(np.nanmean(cld_dz[(nda == 0) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 0) & (iint == 0)]))
print(np.nanmean(cld_dz[(nda == 0) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 0) & (iint == 1)]))
print('------------') print('------------')
print('level 1: ') print('level 1: ')
print(np.nanmean(cld_dz[(nda == 1)]), np.nanmean(cld_hgt[(nda == 1)])) print(np.nanmean(cld_dz[(nda == 1) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 1) & (iint == 0)]))
print(np.nanmean(cld_dz[(nda == 1) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 1) & (iint == 1)]))
print('------------') print('------------')
print('level 2: ') print('level 2: ')
print(np.nanmean(cld_dz[(nda == 2)]), np.nanmean(cld_hgt[(nda == 2)])) print(np.nanmean(cld_dz[(nda == 2) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 2) & (iint == 0)]))
print(np.nanmean(cld_dz[(nda == 2) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 2) & (iint == 1)]))
print('------------') print('------------')
print('level 3: ') print('level 3: ')
print(np.nanmean(cld_dz[(nda == 3)]), np.nanmean(cld_hgt[(nda == 3)])) print(np.nanmean(cld_dz[(nda == 3) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 3) & (iint == 0)]))
print(np.nanmean(cld_dz[(nda == 3) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 3) & (iint == 1)]))
print('------------') print('------------')
print('level 4: ') print('level 4: ')
print(np.nanmean(cld_dz[(nda == 4)]), np.nanmean(cld_hgt[(nda == 4)])) print(np.nanmean(cld_dz[(nda == 4) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 4) & (iint == 0)]))
print(np.nanmean(cld_dz[(nda == 4) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 4) & (iint == 1)]))
print('No icing: ', np.histogram(nda[iint == 0], bins=5)[0])
print('---------------------------')
print('Icing: ', np.histogram(nda[iint == 1], bins=5)[0])
print('-----------------------------')
print('----------------------------') print('----------------------------')
print('-----------------------------') print('-----------------------------')
print('No icing: ', np.histogram(nda[labels == 0], bins=5)[0]) labels, prob_avg, cm_avg = pickle.load(open(preds_file, 'rb'))
print('---------------------------')
print('Icing: ', np.histogram(nda[labels == 1], bins=5)[0])
print('-----------------------------')
preds = np.where(prob_avg > 0.5, 1, 0) preds = np.where(prob_avg > 0.5, 1, 0)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment