From 577699791c0ce5137fdabcf2c51fa906ad016a43 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Wed, 1 Dec 2021 14:55:11 -0600 Subject: [PATCH] minor --- modules/icing/pirep_goes.py | 30 +++++++++++++++++++----------- 1 file changed, 19 insertions(+), 11 deletions(-) diff --git a/modules/icing/pirep_goes.py b/modules/icing/pirep_goes.py index 98e51883..9c32175e 100644 --- a/modules/icing/pirep_goes.py +++ b/modules/icing/pirep_goes.py @@ -1811,47 +1811,55 @@ def tiles_info(filename): def analyze(preds_file, truth_file='/Users/tomrink/data/icing_ml/tiles_202109240000_202111212359_l2_test_v3_DAY.h5'): h5f = h5py.File(truth_file, 'r') nda = h5f['flight_altitude'][:] + iint = h5f['icing_intensity'][:] cld_hgt = h5f['cld_height_acha'][:] cld_dz = h5f['cld_geo_thick'][:] cld_tmp = h5f['cld_temp_acha'][:] + iint = np.where(iint == -1, 0, iint) + iint = np.where(iint != 0, 1, iint) + nda[np.logical_and(nda >= 0, nda < 2000)] = 0 nda[np.logical_and(nda >= 2000, nda < 4000)] = 1 nda[np.logical_and(nda >= 4000, nda < 6000)] = 2 nda[np.logical_and(nda >= 6000, nda < 8000)] = 3 nda[np.logical_and(nda >= 8000, nda < 15000)] = 4 - labels, prob_avg, cm_avg = pickle.load(open(preds_file, 'rb')) - print(np.sum(nda == 0), np.sum(nda == 1), np.sum(nda == 2), np.sum(nda == 3), np.sum(nda == 4)) print('---------------------------') print('level 0: ') - print(np.nanmean(cld_dz[(nda == 0)]), np.nanmean(cld_hgt[(nda == 0)])) + print(np.nanmean(cld_dz[(nda == 0) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 0) & (iint == 0)])) + print(np.nanmean(cld_dz[(nda == 0) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 0) & (iint == 1)])) print('------------') print('level 1: ') - print(np.nanmean(cld_dz[(nda == 1)]), np.nanmean(cld_hgt[(nda == 1)])) + print(np.nanmean(cld_dz[(nda == 1) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 1) & (iint == 0)])) + print(np.nanmean(cld_dz[(nda == 1) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 1) & (iint == 1)])) print('------------') print('level 2: ') - print(np.nanmean(cld_dz[(nda == 2)]), np.nanmean(cld_hgt[(nda == 2)])) + print(np.nanmean(cld_dz[(nda == 2) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 2) & (iint == 0)])) + print(np.nanmean(cld_dz[(nda == 2) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 2) & (iint == 1)])) print('------------') print('level 3: ') - print(np.nanmean(cld_dz[(nda == 3)]), np.nanmean(cld_hgt[(nda == 3)])) + print(np.nanmean(cld_dz[(nda == 3) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 3) & (iint == 0)])) + print(np.nanmean(cld_dz[(nda == 3) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 3) & (iint == 1)])) print('------------') print('level 4: ') - print(np.nanmean(cld_dz[(nda == 4)]), np.nanmean(cld_hgt[(nda == 4)])) + print(np.nanmean(cld_dz[(nda == 4) & (iint == 0)]), np.nanmean(cld_hgt[(nda == 4) & (iint == 0)])) + print(np.nanmean(cld_dz[(nda == 4) & (iint == 1)]), np.nanmean(cld_hgt[(nda == 4) & (iint == 1)])) + print('No icing: ', np.histogram(nda[iint == 0], bins=5)[0]) + print('---------------------------') + print('Icing: ', np.histogram(nda[iint == 1], bins=5)[0]) + print('-----------------------------') print('----------------------------') print('-----------------------------') - print('No icing: ', np.histogram(nda[labels == 0], bins=5)[0]) - print('---------------------------') - print('Icing: ', np.histogram(nda[labels == 1], bins=5)[0]) - print('-----------------------------') + labels, prob_avg, cm_avg = pickle.load(open(preds_file, 'rb')) preds = np.where(prob_avg > 0.5, 1, 0) -- GitLab