Skip to content
Snippets Groups Projects
Commit 45cd28ce authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 8a8e6c70
No related branches found
No related tags found
No related merge requests found
...@@ -58,8 +58,8 @@ params = ['temp_11_0um_nom', 'refl_0_65um_nom', 'refl_submin_ch01', 'refl_submax ...@@ -58,8 +58,8 @@ params = ['temp_11_0um_nom', 'refl_0_65um_nom', 'refl_submin_ch01', 'refl_submax
params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'temp_stddev3x3_ch31', 'refl_stddev3x3_ch01', label_param] params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'temp_stddev3x3_ch31', 'refl_stddev3x3_ch01', label_param]
data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom'] data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom']
data_params_full = ['refl_0_65um_nom'] data_params_full = ['refl_0_65um_nom']
# sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01'] sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01']
sub_fields = ['refl_stddev3x3_ch01'] # sub_fields = ['refl_stddev3x3_ch01']
label_idx_i = params_i.index(label_param) label_idx_i = params_i.index(label_param)
label_idx = params.index(label_param) label_idx = params.index(label_param)
...@@ -209,7 +209,7 @@ class SRCNN: ...@@ -209,7 +209,7 @@ class SRCNN:
self.test_label_files = None self.test_label_files = None
# self.n_chans = len(data_params_half) + len(data_params_full) + 1 # self.n_chans = len(data_params_half) + len(data_params_full) + 1
self.n_chans = 4 self.n_chans = 6
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
...@@ -265,38 +265,40 @@ class SRCNN: ...@@ -265,38 +265,40 @@ class SRCNN:
tmp = np.where(np.isnan(tmp), 0.0, tmp) tmp = np.where(np.isnan(tmp), 0.0, tmp)
tmp = tmp[:, self.slc_y_m, self.slc_x_m] tmp = tmp[:, self.slc_y_m, self.slc_x_m]
tmp = self.upsample(tmp) tmp = self.upsample(tmp)
tmp = smooth_2d(tmp)
tmp = normalize(tmp, param, mean_std_dct) tmp = normalize(tmp, param, mean_std_dct)
data_norm.append(tmp) data_norm.append(tmp)
for param in sub_fields:
idx = params.index(param)
tmp = input_data[:, idx, :, :]
tmp = np.where(np.isnan(tmp), 0.0, tmp)
tmp = tmp[:, self.slc_y_m, self.slc_x_m]
tmp = self.upsample(tmp)
# if param != 'refl_substddev_ch01':
if False:
tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
else:
tmp = np.where(np.isnan(tmp), 0.0, tmp)
data_norm.append(tmp)
# for param in sub_fields: # for param in sub_fields:
# idx = params.index(param) # idx = params.index(param)
# tmp = input_data[:, idx, :, :] # tmp = input_data[:, idx, :, :]
# tmp = upsample_nearest(tmp) # tmp = np.where(np.isnan(tmp), 0.0, tmp)
# tmp = tmp[:, self.slc_y, self.slc_x] # tmp = tmp[:, self.slc_y_m, self.slc_x_m]
# if param != 'refl_substddev_ch01': # tmp = self.upsample(tmp)
# # if param != 'refl_substddev_ch01':
# if False:
# tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
# else: # else:
# tmp = np.where(np.isnan(tmp), 0, tmp) # tmp = np.where(np.isnan(tmp), 0.0, tmp)
# data_norm.append(tmp) # data_norm.append(tmp)
for param in sub_fields:
idx = params.index(param)
tmp = input_data[:, idx, :, :]
tmp = upsample_nearest(tmp)
tmp = tmp[:, self.slc_y, self.slc_x]
if param != 'refl_substddev_ch01':
tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
else:
tmp = np.where(np.isnan(tmp), 0, tmp)
data_norm.append(tmp)
# --------------------------------------------------- # ---------------------------------------------------
tmp = input_label[:, label_idx_i, ::2, ::2] tmp = input_label[:, label_idx_i, ::2, ::2]
tmp = tmp.copy() tmp = tmp.copy()
tmp = np.where(np.isnan(tmp), 0.0, tmp) tmp = np.where(np.isnan(tmp), 0.0, tmp)
tmp = tmp[:, self.slc_y_2, self.slc_x_2] tmp = tmp[:, self.slc_y_2, self.slc_x_2]
tmp = self.upsample(tmp) tmp = self.upsample(tmp)
tmp = smooth_2d(tmp)
tmp = normalize(tmp, label_param, mean_std_dct) tmp = normalize(tmp, label_param, mean_std_dct)
data_norm.append(tmp) data_norm.append(tmp)
# --------- # ---------
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment