From 45cd28cec20d53fb90ccd4007dd6962bb7f1dd4a Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Mon, 26 Jun 2023 13:33:17 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/cloud_opd_srcnn_abi.py | 42 +++++++++++---------- 1 file changed, 22 insertions(+), 20 deletions(-) diff --git a/modules/deeplearning/cloud_opd_srcnn_abi.py b/modules/deeplearning/cloud_opd_srcnn_abi.py index 7719ad33..fb5c726a 100644 --- a/modules/deeplearning/cloud_opd_srcnn_abi.py +++ b/modules/deeplearning/cloud_opd_srcnn_abi.py @@ -58,8 +58,8 @@ params = ['temp_11_0um_nom', 'refl_0_65um_nom', 'refl_submin_ch01', 'refl_submax params_i = ['temp_11_0um_nom', 'refl_0_65um_nom', 'temp_stddev3x3_ch31', 'refl_stddev3x3_ch01', label_param] data_params_half = ['temp_11_0um_nom', 'refl_0_65um_nom'] data_params_full = ['refl_0_65um_nom'] -# sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01'] -sub_fields = ['refl_stddev3x3_ch01'] +sub_fields = ['refl_submin_ch01', 'refl_submax_ch01', 'refl_substddev_ch01'] +# sub_fields = ['refl_stddev3x3_ch01'] label_idx_i = params_i.index(label_param) label_idx = params.index(label_param) @@ -209,7 +209,7 @@ class SRCNN: self.test_label_files = None # self.n_chans = len(data_params_half) + len(data_params_full) + 1 - self.n_chans = 4 + self.n_chans = 6 self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) @@ -265,38 +265,40 @@ class SRCNN: tmp = np.where(np.isnan(tmp), 0.0, tmp) tmp = tmp[:, self.slc_y_m, self.slc_x_m] tmp = self.upsample(tmp) + tmp = smooth_2d(tmp) tmp = normalize(tmp, param, mean_std_dct) data_norm.append(tmp) - for param in sub_fields: - idx = params.index(param) - tmp = input_data[:, idx, :, :] - tmp = np.where(np.isnan(tmp), 0.0, tmp) - tmp = tmp[:, self.slc_y_m, self.slc_x_m] - tmp = self.upsample(tmp) - # if param != 'refl_substddev_ch01': - if False: - tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) - else: - tmp = np.where(np.isnan(tmp), 0.0, tmp) - data_norm.append(tmp) - # for param in sub_fields: # idx = params.index(param) # tmp = input_data[:, idx, :, :] - # tmp = upsample_nearest(tmp) - # tmp = tmp[:, self.slc_y, self.slc_x] - # if param != 'refl_substddev_ch01': + # tmp = np.where(np.isnan(tmp), 0.0, tmp) + # tmp = tmp[:, self.slc_y_m, self.slc_x_m] + # tmp = self.upsample(tmp) + # # if param != 'refl_substddev_ch01': + # if False: # tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) # else: - # tmp = np.where(np.isnan(tmp), 0, tmp) + # tmp = np.where(np.isnan(tmp), 0.0, tmp) # data_norm.append(tmp) + + for param in sub_fields: + idx = params.index(param) + tmp = input_data[:, idx, :, :] + tmp = upsample_nearest(tmp) + tmp = tmp[:, self.slc_y, self.slc_x] + if param != 'refl_substddev_ch01': + tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct) + else: + tmp = np.where(np.isnan(tmp), 0, tmp) + data_norm.append(tmp) # --------------------------------------------------- tmp = input_label[:, label_idx_i, ::2, ::2] tmp = tmp.copy() tmp = np.where(np.isnan(tmp), 0.0, tmp) tmp = tmp[:, self.slc_y_2, self.slc_x_2] tmp = self.upsample(tmp) + tmp = smooth_2d(tmp) tmp = normalize(tmp, label_param, mean_std_dct) data_norm.append(tmp) # --------- -- GitLab