Skip to content
Snippets Groups Projects
Commit 3b6fa107 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent a1767ed4
No related branches found
No related tags found
No related merge requests found
......@@ -13,6 +13,7 @@ from icing.pirep_goes import normalize, make_for_full_domain_predict
LOG_DEVICE_PLACEMENT = False
# Manual (data, label) caching, but has been replaced with tf.data.dataset.cache()
CACHE_DATA_IN_MEM = False
PROC_BATCH_SIZE = 4096
......@@ -37,8 +38,8 @@ NOISE_TRAINING = False
img_width = 16
mean_std_file = homedir+'data/icing/mean_std_no_ice.pkl'
# mean_std_file = homedir+'data/icing/mean_std_l1b_no_ice.pkl'
# mean_std_file = homedir+'data/icing/mean_std_no_ice.pkl'
mean_std_file = homedir+'data/icing/mean_std_l1b_no_ice.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct = pickle.load(f)
f.close()
......@@ -47,13 +48,13 @@ f.close()
# train_params = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
# 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_acha', 'cld_opd_acha']
# -- DAY L2 -------------
train_params = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
# 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp']
'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
#train_params = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
## 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp']
# 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
# -- DAY L1B --------------------------------
# train_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
# 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom',
# 'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom']
train_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom',
'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom']
# -- NIGHT L1B -------------------------------
# train_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
# 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom']
......@@ -223,9 +224,8 @@ class IcingIntensityNN:
if not is_training:
h5f = self.h5f_tst
key = frozenset(idxs)
if CACHE_DATA_IN_MEM:
key = frozenset(idxs)
tup = self.in_mem_data_cache.get(key)
if tup is not None:
return tup[0], tup[1]
......@@ -436,7 +436,7 @@ class IcingIntensityNN:
momentum = 0.99
# num_filters = 16
num_filters = 24
num_filters = 30
conv = tf.keras.layers.Conv2D(num_filters, 5, strides=[1, 1], padding=padding, activation=activation)(self.inputs[0])
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment