From 3b6fa107732a00932664f3f18bee9bc8fb292a02 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Tue, 14 Sep 2021 16:05:42 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/icing_cnn.py | 22 +++++++++++----------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/modules/deeplearning/icing_cnn.py b/modules/deeplearning/icing_cnn.py index e384b00d..c7213d1c 100644 --- a/modules/deeplearning/icing_cnn.py +++ b/modules/deeplearning/icing_cnn.py @@ -13,6 +13,7 @@ from icing.pirep_goes import normalize, make_for_full_domain_predict LOG_DEVICE_PLACEMENT = False +# Manual (data, label) caching, but has been replaced with tf.data.dataset.cache() CACHE_DATA_IN_MEM = False PROC_BATCH_SIZE = 4096 @@ -37,8 +38,8 @@ NOISE_TRAINING = False img_width = 16 -mean_std_file = homedir+'data/icing/mean_std_no_ice.pkl' -# mean_std_file = homedir+'data/icing/mean_std_l1b_no_ice.pkl' +# mean_std_file = homedir+'data/icing/mean_std_no_ice.pkl' +mean_std_file = homedir+'data/icing/mean_std_l1b_no_ice.pkl' f = open(mean_std_file, 'rb') mean_std_dct = pickle.load(f) f.close() @@ -47,13 +48,13 @@ f.close() # train_params = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction', # 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_acha', 'cld_opd_acha'] # -- DAY L2 ------------- -train_params = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction', -# 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp'] - 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp'] +#train_params = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction', +## 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp'] +# 'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp'] # -- DAY L1B -------------------------------- -# train_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', -# 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom', -# 'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom'] +train_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', + 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom', + 'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom'] # -- NIGHT L1B ------------------------------- # train_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom', # 'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom'] @@ -223,9 +224,8 @@ class IcingIntensityNN: if not is_training: h5f = self.h5f_tst - key = frozenset(idxs) - if CACHE_DATA_IN_MEM: + key = frozenset(idxs) tup = self.in_mem_data_cache.get(key) if tup is not None: return tup[0], tup[1] @@ -436,7 +436,7 @@ class IcingIntensityNN: momentum = 0.99 # num_filters = 16 - num_filters = 24 + num_filters = 30 conv = tf.keras.layers.Conv2D(num_filters, 5, strides=[1, 1], padding=padding, activation=activation)(self.inputs[0]) conv = tf.keras.layers.MaxPool2D(padding=padding)(conv) -- GitLab