Skip to content
Snippets Groups Projects
Commit 35e254c3 authored by tomrink's avatar tomrink
Browse files

minor...

parent afa0d82e
No related branches found
No related tags found
No related merge requests found
...@@ -309,35 +309,35 @@ class UNET: ...@@ -309,35 +309,35 @@ class UNET:
dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8) dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8)
self.eval_dataset = dataset self.eval_dataset = dataset
def setup_pipeline(self, data_nda, label_nda, perc=0.20): # def setup_pipeline(self, data_nda, label_nda, perc=0.20):
#
num_samples = data_nda.shape[0] # num_samples = data_nda.shape[0]
num_test = int(num_samples * perc) # num_test = int(num_samples * perc)
self.num_data_samples = num_samples - num_test # self.num_data_samples = num_samples - num_test
num_train = self.num_data_samples # num_train = self.num_data_samples
#
self.train_data_nda = data_nda[0:num_train] # self.train_data_nda = data_nda[0:num_train]
self.train_label_nda = label_nda[0:num_train] # self.train_label_nda = label_nda[0:num_train]
self.test_data_nda = data_nda[num_train:] # self.test_data_nda = data_nda[num_train:]
self.test_label_nda = label_nda[num_train:] # self.test_label_nda = label_nda[num_train:]
#
trn_idxs = np.arange(self.train_data_nda.shape[0]) # trn_idxs = np.arange(self.train_data_nda.shape[0])
tst_idxs = np.arange(self.test_data_nda.shape[0]) # tst_idxs = np.arange(self.test_data_nda.shape[0])
#
np.random.shuffle(tst_idxs) # np.random.shuffle(tst_idxs)
#
self.get_train_dataset(trn_idxs) # self.get_train_dataset(trn_idxs)
self.get_test_dataset(tst_idxs) # self.get_test_dataset(tst_idxs)
#
print('datetime: ', now) # print('datetime: ', now)
print('training and test data: ') # print('training and test data: ')
print('---------------------------') # print('---------------------------')
print('num train samples: ', self.num_data_samples) # print('num train samples: ', self.num_data_samples)
print('BATCH SIZE: ', BATCH_SIZE) # print('BATCH SIZE: ', BATCH_SIZE)
print('num test samples: ', tst_idxs.shape[0]) # print('num test samples: ', tst_idxs.shape[0])
print('setup_pipeline: Done') # print('setup_pipeline: Done')
def setup_pipeline_files(self, data_files, label_files, perc=0.20): def setup_pipeline(self, data_files, label_files, perc=0.20):
num_files = len(data_files) num_files = len(data_files)
num_test_files = int(num_files * perc) num_test_files = int(num_files * perc)
num_train_files = num_files - num_test_files num_train_files = num_files - num_test_files
...@@ -859,7 +859,7 @@ class UNET: ...@@ -859,7 +859,7 @@ class UNET:
def run(self, directory): def run(self, directory):
data_files = glob.glob(directory+'mod_res*.npy') data_files = glob.glob(directory+'mod_res*.npy')
label_files = [f.replace('mod', 'img') for f in data_files] label_files = [f.replace('mod', 'img') for f in data_files]
self.setup_pipeline_files(data_files, label_files) self.setup_pipeline(data_files, label_files)
self.build_model() self.build_model()
self.build_training() self.build_training()
self.build_evaluation() self.build_evaluation()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment