From 35e254c3d11414e85e930e003fee14fb0bf55b71 Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Sat, 4 Jun 2022 11:45:07 -0500 Subject: [PATCH] minor... --- modules/deeplearning/unet.py | 60 ++++++++++++++++++------------------ 1 file changed, 30 insertions(+), 30 deletions(-) diff --git a/modules/deeplearning/unet.py b/modules/deeplearning/unet.py index 39ac89b8..9e420efa 100644 --- a/modules/deeplearning/unet.py +++ b/modules/deeplearning/unet.py @@ -309,35 +309,35 @@ class UNET: dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8) self.eval_dataset = dataset - def setup_pipeline(self, data_nda, label_nda, perc=0.20): - - num_samples = data_nda.shape[0] - num_test = int(num_samples * perc) - self.num_data_samples = num_samples - num_test - num_train = self.num_data_samples - - self.train_data_nda = data_nda[0:num_train] - self.train_label_nda = label_nda[0:num_train] - self.test_data_nda = data_nda[num_train:] - self.test_label_nda = label_nda[num_train:] - - trn_idxs = np.arange(self.train_data_nda.shape[0]) - tst_idxs = np.arange(self.test_data_nda.shape[0]) - - np.random.shuffle(tst_idxs) - - self.get_train_dataset(trn_idxs) - self.get_test_dataset(tst_idxs) - - print('datetime: ', now) - print('training and test data: ') - print('---------------------------') - print('num train samples: ', self.num_data_samples) - print('BATCH SIZE: ', BATCH_SIZE) - print('num test samples: ', tst_idxs.shape[0]) - print('setup_pipeline: Done') - - def setup_pipeline_files(self, data_files, label_files, perc=0.20): + # def setup_pipeline(self, data_nda, label_nda, perc=0.20): + # + # num_samples = data_nda.shape[0] + # num_test = int(num_samples * perc) + # self.num_data_samples = num_samples - num_test + # num_train = self.num_data_samples + # + # self.train_data_nda = data_nda[0:num_train] + # self.train_label_nda = label_nda[0:num_train] + # self.test_data_nda = data_nda[num_train:] + # self.test_label_nda = label_nda[num_train:] + # + # trn_idxs = np.arange(self.train_data_nda.shape[0]) + # tst_idxs = np.arange(self.test_data_nda.shape[0]) + # + # np.random.shuffle(tst_idxs) + # + # self.get_train_dataset(trn_idxs) + # self.get_test_dataset(tst_idxs) + # + # print('datetime: ', now) + # print('training and test data: ') + # print('---------------------------') + # print('num train samples: ', self.num_data_samples) + # print('BATCH SIZE: ', BATCH_SIZE) + # print('num test samples: ', tst_idxs.shape[0]) + # print('setup_pipeline: Done') + + def setup_pipeline(self, data_files, label_files, perc=0.20): num_files = len(data_files) num_test_files = int(num_files * perc) num_train_files = num_files - num_test_files @@ -859,7 +859,7 @@ class UNET: def run(self, directory): data_files = glob.glob(directory+'mod_res*.npy') label_files = [f.replace('mod', 'img') for f in data_files] - self.setup_pipeline_files(data_files, label_files) + self.setup_pipeline(data_files, label_files) self.build_model() self.build_training() self.build_evaluation() -- GitLab