Skip to content
Snippets Groups Projects
Commit 2ff47dde authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 30e1aac8
No related branches found
No related tags found
No related merge requests found
......@@ -371,13 +371,14 @@ def analyze2(raob_to_amv_dct, raob_dct):
sidx = 5
pidx = 4
print('Number of AMVs: {0:d}'.format(num_good))
spd_min = good_amvs[:, sidx].min()
spd_max = good_amvs[:, sidx].max()
print('spd min/max/mean: ', spd_min, spd_max, np.average(good_amvs[:, sidx]))
print('spd min/max/mean: {0:.2f} {1:.2f} {2:.2f}'.format(spd_min, spd_max, np.average(good_amvs[:, sidx])))
p_min = good_amvs[:, pidx].min()
p_max = good_amvs[:, pidx].max()
print('pres min/max/mean: ', p_min, p_max, np.average(good_amvs[:, pidx]))
print('pres min/max/mean: {0:.2f} {1:.2f} {2:.2f}'.format(p_min, p_max, np.average(good_amvs[:, pidx])))
low = good_amvs[:, pidx] >= 700
mid = np.logical_and(good_amvs[:, pidx] < 700, good_amvs[:, pidx] > 400)
......@@ -387,21 +388,21 @@ def analyze2(raob_to_amv_dct, raob_dct):
n_mid = np.sum(mid)
n_hgh = np.sum(hgh)
print('% low: ', 100.0*(n_low/num_good))
print('% mid: ', 100.0*(n_mid/num_good))
print('% hgh: ', 100.0*(n_hgh/num_good))
print('% low: {0:.2f}'.format(100.0*(n_low/num_good)))
print('% mid: {0:.2f}'.format(100.0*(n_mid/num_good)))
print('% hgh: {0:.2f}'.format(100.0*(n_hgh/num_good)))
print('---------------------------')
print('Low Spd min/max/mean: ', good_amvs[low, sidx].min(), good_amvs[low, sidx].max(), good_amvs[low,sidx].mean())
print('Low Press min/max/mean: ', good_amvs[low, pidx].min(), good_amvs[low, pidx].max(), good_amvs[low, pidx].mean())
print('Low Spd min/max/mean: {0:.2f} {1:.2f} {2:.2f}'.format(good_amvs[low, sidx].min(), good_amvs[low, sidx].max(), good_amvs[low,sidx].mean()))
print('Low Press min/max/mean: {0:.2f} {1:.2f} {2:.2f}'.format(good_amvs[low, pidx].min(), good_amvs[low, pidx].max(), good_amvs[low, pidx].mean()))
print('---------------------------')
print('Mid Spd min/max/mean: ', good_amvs[mid, sidx].min(), good_amvs[mid, sidx].max(), good_amvs[mid, sidx].mean())
print('Mid Press min/max/mean: ', good_amvs[mid, pidx].min(), good_amvs[mid, pidx].max(), good_amvs[mid, pidx].mean())
print('Mid Spd min/max/mean: {0:.2f} {1:.2f} {2:.2f}'.format(good_amvs[mid, sidx].min(), good_amvs[mid, sidx].max(), good_amvs[mid, sidx].mean()))
print('Mid Press min/max/mean: {0:.2f} {1:.2f} {2:.2f}'.format(good_amvs[mid, pidx].min(), good_amvs[mid, pidx].max(), good_amvs[mid, pidx].mean()))
print('---------------------------')
print('Hgh Spd min/max/mean: ', good_amvs[hgh, sidx].min(), good_amvs[hgh, sidx].max(), good_amvs[hgh, sidx].mean())
print('Hgh Press min/max/mean: ', good_amvs[hgh, pidx].min(), good_amvs[hgh, pidx].max(), good_amvs[hgh, pidx].mean())
print('Hgh Spd min/max/mean: {0:.2f} {1:.2f} {2:.2f}'.format(good_amvs[hgh, sidx].min(), good_amvs[hgh, sidx].max(), good_amvs[hgh, sidx].mean()))
print('Hgh Press min/max/mean: {0:.2f} {1:.2f} {2:.2f}'.format(good_amvs[hgh, pidx].min(), good_amvs[hgh, pidx].max(), good_amvs[hgh, pidx].mean()))
bin_size = 200.0
vld_bf = bfs[:, 3] == 0
......@@ -413,12 +414,12 @@ def analyze2(raob_to_amv_dct, raob_dct):
mad = np.average(np.abs(diff))
bias = np.average(diff)
print('********************************************************')
print('num of best fits: ', bf_p.shape[0])
print('press, MAD: ', mad)
print('press, bias: ', bias)
print('Number of good best fits: ', bf_p.shape[0])
print('press, MAD: {0:.2f}'.format(mad))
print('press, bias: {0:.2f}'.format(bias))
pd_std = np.std(diff)
pd_mean = np.mean(diff)
print('press bias/rms ', pd_mean, np.sqrt(pd_mean**2 + pd_std**2))
print('press bias/rms: {0:.2f} {1:.2f} '.format(pd_mean, np.sqrt(pd_mean**2 + pd_std**2)))
print('------------------------------------------')
bin_ranges = get_press_bin_ranges(50, 1050, bin_size=bin_size)
......@@ -431,17 +432,17 @@ def analyze2(raob_to_amv_dct, raob_dct):
diff = amv_spd * units('m/s') - bf_spd
spd_mad = np.average(np.abs(diff))
spd_bias = np.average(diff)
print('spd, MAD: ', spd_mad)
print('spd, bias: ', spd_bias)
print('spd, MAD: {0:.2f}'.format(spd_mad))
print('spd, bias: {0:.2f}'.format(spd_bias))
spd_mean = np.mean(diff)
spd_std = np.std(diff)
print('spd MAD/bias/rms: ', np.average(np.abs(diff)), spd_mean, np.sqrt(spd_mean**2 + spd_std**2))
print('spd MAD/bias/rms: {0:.2f} {1:.2f} {2:.2f}'.format(np.average(np.abs(diff)), spd_mean, np.sqrt(spd_mean**2 + spd_std**2)))
print('-----------------')
bin_spd = bin_data_by(diff, amv_p, bin_ranges)
dir_diff = direction_difference(amv_dir, bf_dir.magnitude)
print('dir, MAD: ', np.average(np.abs(dir_diff)))
print('dir bias: ', np.average(dir_diff))
print('dir, MAD: {0:.2f}'.format(np.average(np.abs(dir_diff))))
print('dir bias: {0:.2f}'.format(np.average(dir_diff)))
print('-------------------------------------')
bin_dir = bin_data_by(dir_diff, amv_p, bin_ranges)
......@@ -452,7 +453,7 @@ def analyze2(raob_to_amv_dct, raob_dct):
vd = np.sqrt(u_diffs**2 + v_diffs**2)
vd_mean = np.mean(vd)
vd_std = np.std(vd)
print('VD bias/rms: ', vd_mean, np.sqrt(vd_mean**2 + vd_std**2))
print('VD bias/rms: {0:.2f} {1:.2f}'.format(vd_mean, np.sqrt(vd_mean**2 + vd_std**2)))
print('------------------------------------------')
x_values = []
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment