From 2ff47ddebdaa2b303600308ed23c4892a6b2153f Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Mon, 30 Nov 2020 22:36:19 -0600 Subject: [PATCH] snapshot... --- modules/aeolus/aeolus_amv.py | 43 ++++++++++++++++++------------------ 1 file changed, 22 insertions(+), 21 deletions(-) diff --git a/modules/aeolus/aeolus_amv.py b/modules/aeolus/aeolus_amv.py index 76f75cdc..84569669 100644 --- a/modules/aeolus/aeolus_amv.py +++ b/modules/aeolus/aeolus_amv.py @@ -371,13 +371,14 @@ def analyze2(raob_to_amv_dct, raob_dct): sidx = 5 pidx = 4 + print('Number of AMVs: {0:d}'.format(num_good)) spd_min = good_amvs[:, sidx].min() spd_max = good_amvs[:, sidx].max() - print('spd min/max/mean: ', spd_min, spd_max, np.average(good_amvs[:, sidx])) + print('spd min/max/mean: {0:.2f} {1:.2f} {2:.2f}'.format(spd_min, spd_max, np.average(good_amvs[:, sidx]))) p_min = good_amvs[:, pidx].min() p_max = good_amvs[:, pidx].max() - print('pres min/max/mean: ', p_min, p_max, np.average(good_amvs[:, pidx])) + print('pres min/max/mean: {0:.2f} {1:.2f} {2:.2f}'.format(p_min, p_max, np.average(good_amvs[:, pidx]))) low = good_amvs[:, pidx] >= 700 mid = np.logical_and(good_amvs[:, pidx] < 700, good_amvs[:, pidx] > 400) @@ -387,21 +388,21 @@ def analyze2(raob_to_amv_dct, raob_dct): n_mid = np.sum(mid) n_hgh = np.sum(hgh) - print('% low: ', 100.0*(n_low/num_good)) - print('% mid: ', 100.0*(n_mid/num_good)) - print('% hgh: ', 100.0*(n_hgh/num_good)) + print('% low: {0:.2f}'.format(100.0*(n_low/num_good))) + print('% mid: {0:.2f}'.format(100.0*(n_mid/num_good))) + print('% hgh: {0:.2f}'.format(100.0*(n_hgh/num_good))) print('---------------------------') - print('Low Spd min/max/mean: ', good_amvs[low, sidx].min(), good_amvs[low, sidx].max(), good_amvs[low,sidx].mean()) - print('Low Press min/max/mean: ', good_amvs[low, pidx].min(), good_amvs[low, pidx].max(), good_amvs[low, pidx].mean()) + print('Low Spd min/max/mean: {0:.2f} {1:.2f} {2:.2f}'.format(good_amvs[low, sidx].min(), good_amvs[low, sidx].max(), good_amvs[low,sidx].mean())) + print('Low Press min/max/mean: {0:.2f} {1:.2f} {2:.2f}'.format(good_amvs[low, pidx].min(), good_amvs[low, pidx].max(), good_amvs[low, pidx].mean())) print('---------------------------') - print('Mid Spd min/max/mean: ', good_amvs[mid, sidx].min(), good_amvs[mid, sidx].max(), good_amvs[mid, sidx].mean()) - print('Mid Press min/max/mean: ', good_amvs[mid, pidx].min(), good_amvs[mid, pidx].max(), good_amvs[mid, pidx].mean()) + print('Mid Spd min/max/mean: {0:.2f} {1:.2f} {2:.2f}'.format(good_amvs[mid, sidx].min(), good_amvs[mid, sidx].max(), good_amvs[mid, sidx].mean())) + print('Mid Press min/max/mean: {0:.2f} {1:.2f} {2:.2f}'.format(good_amvs[mid, pidx].min(), good_amvs[mid, pidx].max(), good_amvs[mid, pidx].mean())) print('---------------------------') - print('Hgh Spd min/max/mean: ', good_amvs[hgh, sidx].min(), good_amvs[hgh, sidx].max(), good_amvs[hgh, sidx].mean()) - print('Hgh Press min/max/mean: ', good_amvs[hgh, pidx].min(), good_amvs[hgh, pidx].max(), good_amvs[hgh, pidx].mean()) + print('Hgh Spd min/max/mean: {0:.2f} {1:.2f} {2:.2f}'.format(good_amvs[hgh, sidx].min(), good_amvs[hgh, sidx].max(), good_amvs[hgh, sidx].mean())) + print('Hgh Press min/max/mean: {0:.2f} {1:.2f} {2:.2f}'.format(good_amvs[hgh, pidx].min(), good_amvs[hgh, pidx].max(), good_amvs[hgh, pidx].mean())) bin_size = 200.0 vld_bf = bfs[:, 3] == 0 @@ -413,12 +414,12 @@ def analyze2(raob_to_amv_dct, raob_dct): mad = np.average(np.abs(diff)) bias = np.average(diff) print('********************************************************') - print('num of best fits: ', bf_p.shape[0]) - print('press, MAD: ', mad) - print('press, bias: ', bias) + print('Number of good best fits: ', bf_p.shape[0]) + print('press, MAD: {0:.2f}'.format(mad)) + print('press, bias: {0:.2f}'.format(bias)) pd_std = np.std(diff) pd_mean = np.mean(diff) - print('press bias/rms ', pd_mean, np.sqrt(pd_mean**2 + pd_std**2)) + print('press bias/rms: {0:.2f} {1:.2f} '.format(pd_mean, np.sqrt(pd_mean**2 + pd_std**2))) print('------------------------------------------') bin_ranges = get_press_bin_ranges(50, 1050, bin_size=bin_size) @@ -431,17 +432,17 @@ def analyze2(raob_to_amv_dct, raob_dct): diff = amv_spd * units('m/s') - bf_spd spd_mad = np.average(np.abs(diff)) spd_bias = np.average(diff) - print('spd, MAD: ', spd_mad) - print('spd, bias: ', spd_bias) + print('spd, MAD: {0:.2f}'.format(spd_mad)) + print('spd, bias: {0:.2f}'.format(spd_bias)) spd_mean = np.mean(diff) spd_std = np.std(diff) - print('spd MAD/bias/rms: ', np.average(np.abs(diff)), spd_mean, np.sqrt(spd_mean**2 + spd_std**2)) + print('spd MAD/bias/rms: {0:.2f} {1:.2f} {2:.2f}'.format(np.average(np.abs(diff)), spd_mean, np.sqrt(spd_mean**2 + spd_std**2))) print('-----------------') bin_spd = bin_data_by(diff, amv_p, bin_ranges) dir_diff = direction_difference(amv_dir, bf_dir.magnitude) - print('dir, MAD: ', np.average(np.abs(dir_diff))) - print('dir bias: ', np.average(dir_diff)) + print('dir, MAD: {0:.2f}'.format(np.average(np.abs(dir_diff)))) + print('dir bias: {0:.2f}'.format(np.average(dir_diff))) print('-------------------------------------') bin_dir = bin_data_by(dir_diff, amv_p, bin_ranges) @@ -452,7 +453,7 @@ def analyze2(raob_to_amv_dct, raob_dct): vd = np.sqrt(u_diffs**2 + v_diffs**2) vd_mean = np.mean(vd) vd_std = np.std(vd) - print('VD bias/rms: ', vd_mean, np.sqrt(vd_mean**2 + vd_std**2)) + print('VD bias/rms: {0:.2f} {1:.2f}'.format(vd_mean, np.sqrt(vd_mean**2 + vd_std**2))) print('------------------------------------------') x_values = [] -- GitLab