Skip to content
Snippets Groups Projects
Commit 1308ba27 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent f7e77305
Branches
No related tags found
No related merge requests found
......@@ -58,7 +58,6 @@ mean_std_dct.update(mean_std_dct_l1b)
mean_std_dct.update(mean_std_dct_l2)
IMG_DEPTH = 1
# label_param = 'cloud_fraction'
# label_param = 'cld_opd_dcomp'
label_param = 'cloud_probability'
......@@ -66,8 +65,8 @@ params = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param]
data_params_half = ['temp_11_0um_nom']
data_params_full = ['refl_0_65um_nom']
label_idx = params.index(label_param)
# label_idx = 0
# label_idx = params.index(label_param)
label_idx = 0
print('data_params_half: ', data_params_half)
print('data_params_full: ', data_params_full)
......@@ -315,43 +314,44 @@ class SRCNN:
tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)
def get_in_mem_data_batch(self, idxs, is_training):
# if is_training:
# files = self.train_data_files
# else:
# files = self.test_data_files
#
# data_s = []
# for k in idxs:
# f = files[k]
# try:
# nda = np.load(f)
# except Exception:
# print(f)
# continue
# data_s.append(nda)
# input_data = np.concatenate(data_s)
# input_label = input_data[:, label_idx, :, :]
if is_training:
files = self.train_data_files
data_files = self.train_data_files
label_files = self.train_label_files
else:
files = self.test_data_files
data_files = self.test_data_files
label_files = self.test_label_files
data_s = []
label_s = []
for k in idxs:
f = files[k]
try:
f = data_files[k]
nda = np.load(f)
except Exception:
print(f)
continue
data_s.append(nda)
f = label_files[k]
nda = np.load(f)
label_s.append(nda)
input_data = np.concatenate(data_s)
input_label = np.concatenate(label_s)
input_label = input_data[:, label_idx, :, :]
# if is_training:
# data_files = self.train_data_files
# label_files = self.train_label_files
# else:
# data_files = self.test_data_files
# label_files = self.test_label_files
#
# data_s = []
# label_s = []
# for k in idxs:
# f = data_files[k]
# nda = np.load(f)
# data_s.append(nda)
#
# f = label_files[k]
# nda = np.load(f)
# label_s.append(nda)
# input_data = np.concatenate(data_s)
# input_label = np.concatenate(label_s)
data_norm = []
for param in data_params_half:
idx = params.index(param)
......@@ -360,7 +360,7 @@ class SRCNN:
if DO_ESPCN:
tmp = tmp[:, slc_y_2, slc_x_2]
else: # Half res upsampled to full res:
tmp = get_grid_cell_mean(tmp)
# tmp = get_grid_cell_mean(tmp)
tmp = tmp[:, 0:66, 0:66]
tmp = normalize(tmp, param, mean_std_dct)
data_norm.append(tmp)
......@@ -387,7 +387,7 @@ class SRCNN:
if DO_ESPCN:
tmp = tmp[:, slc_y_2, slc_x_2]
else: # Half res upsampled to full res:
tmp = get_grid_cell_mean(tmp)
# tmp = get_grid_cell_mean(tmp)
tmp = np.where(np.isnan(tmp), 0, tmp)
tmp = tmp[:, 0:66, 0:66]
if label_param != 'cloud_probability':
......@@ -466,13 +466,13 @@ class SRCNN:
self.test_dataset = dataset
def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples):
# self.train_data_files = train_data_files
# self.train_label_files = train_label_files
# self.test_data_files = test_data_files
# self.test_label_files = test_label_files
self.train_data_files = train_data_files
self.train_label_files = train_label_files
self.test_data_files = test_data_files
self.test_label_files = test_label_files
# self.train_data_files = train_data_files
# self.test_data_files = test_data_files
trn_idxs = np.arange(len(train_data_files))
np.random.shuffle(trn_idxs)
......@@ -799,15 +799,15 @@ class SRCNN:
return pred
def run(self, directory, ckpt_dir=None, num_data_samples=50000):
# train_data_files = glob.glob(directory+'data_train*.npy')
# valid_data_files = glob.glob(directory+'data_valid*.npy')
# train_label_files = glob.glob(directory+'label_train*.npy')
# valid_label_files = glob.glob(directory+'label_valid*.npy')
# self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)
train_data_files = glob.glob(directory+'data_train_*.npy')
valid_data_files = glob.glob(directory+'data_valid_*.npy')
self.setup_pipeline(train_data_files, None, valid_data_files, None, num_data_samples)
train_data_files = glob.glob(directory+'data_train*.npy')
valid_data_files = glob.glob(directory+'data_valid*.npy')
train_label_files = glob.glob(directory+'label_train*.npy')
valid_label_files = glob.glob(directory+'label_valid*.npy')
self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)
# train_data_files = glob.glob(directory+'data_train_*.npy')
# valid_data_files = glob.glob(directory+'data_valid_*.npy')
# self.setup_pipeline(train_data_files, None, valid_data_files, None, num_data_samples)
self.build_model()
self.build_training()
......
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment