From 1308ba27631f5288ca6a7e87b0cfc9b80f4c915c Mon Sep 17 00:00:00 2001
From: tomrink <rink@ssec.wisc.edu>
Date: Tue, 14 Mar 2023 12:10:54 -0500
Subject: [PATCH] snapshot...

---
 modules/deeplearning/cnn_cld_frac_mod_res.py | 94 ++++++++++----------
 1 file changed, 47 insertions(+), 47 deletions(-)

diff --git a/modules/deeplearning/cnn_cld_frac_mod_res.py b/modules/deeplearning/cnn_cld_frac_mod_res.py
index 703865d8..117cb25d 100644
--- a/modules/deeplearning/cnn_cld_frac_mod_res.py
+++ b/modules/deeplearning/cnn_cld_frac_mod_res.py
@@ -58,7 +58,6 @@ mean_std_dct.update(mean_std_dct_l1b)
 mean_std_dct.update(mean_std_dct_l2)
 
 IMG_DEPTH = 1
-# label_param = 'cloud_fraction'
 # label_param = 'cld_opd_dcomp'
 label_param = 'cloud_probability'
 
@@ -66,8 +65,8 @@ params = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param]
 data_params_half = ['temp_11_0um_nom']
 data_params_full = ['refl_0_65um_nom']
 
-label_idx = params.index(label_param)
-# label_idx = 0
+# label_idx = params.index(label_param)
+label_idx = 0
 
 print('data_params_half: ', data_params_half)
 print('data_params_full: ', data_params_full)
@@ -315,43 +314,44 @@ class SRCNN:
         tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)
 
     def get_in_mem_data_batch(self, idxs, is_training):
+        # if is_training:
+        #     files = self.train_data_files
+        # else:
+        #     files = self.test_data_files
+        #
+        # data_s = []
+        # for k in idxs:
+        #     f = files[k]
+        #     try:
+        #         nda = np.load(f)
+        #     except Exception:
+        #         print(f)
+        #         continue
+        #     data_s.append(nda)
+        # input_data = np.concatenate(data_s)
+        # input_label = input_data[:, label_idx, :, :]
+
         if is_training:
-            files = self.train_data_files
+            data_files = self.train_data_files
+            label_files = self.train_label_files
         else:
-            files = self.test_data_files
+            data_files = self.test_data_files
+            label_files = self.test_label_files
 
         data_s = []
+        label_s = []
         for k in idxs:
-            f = files[k]
-            try:
-                nda = np.load(f)
-            except Exception:
-                print(f)
-                continue
+            f = data_files[k]
+            nda = np.load(f)
             data_s.append(nda)
+
+            f = label_files[k]
+            nda = np.load(f)
+            label_s.append(nda)
         input_data = np.concatenate(data_s)
+        input_label = np.concatenate(label_s)
         input_label = input_data[:, label_idx, :, :]
 
-        # if is_training:
-        #     data_files = self.train_data_files
-        #     label_files = self.train_label_files
-        # else:
-        #     data_files = self.test_data_files
-        #     label_files = self.test_label_files
-        #
-        # data_s = []
-        # label_s = []
-        # for k in idxs:
-        #     f = data_files[k]
-        #     nda = np.load(f)
-        #     data_s.append(nda)
-        #
-        #     f = label_files[k]
-        #     nda = np.load(f)
-        #     label_s.append(nda)
-        # input_data = np.concatenate(data_s)
-        # input_label = np.concatenate(label_s)
-
         data_norm = []
         for param in data_params_half:
             idx = params.index(param)
@@ -360,7 +360,7 @@ class SRCNN:
             if DO_ESPCN:
                 tmp = tmp[:, slc_y_2, slc_x_2]
             else:  # Half res upsampled to full res:
-                tmp = get_grid_cell_mean(tmp)
+                # tmp = get_grid_cell_mean(tmp)
                 tmp = tmp[:, 0:66, 0:66]
             tmp = normalize(tmp, param, mean_std_dct)
             data_norm.append(tmp)
@@ -387,7 +387,7 @@ class SRCNN:
         if DO_ESPCN:
             tmp = tmp[:, slc_y_2, slc_x_2]
         else:  # Half res upsampled to full res:
-            tmp = get_grid_cell_mean(tmp)
+            # tmp = get_grid_cell_mean(tmp)
             tmp = np.where(np.isnan(tmp), 0, tmp)
             tmp = tmp[:, 0:66, 0:66]
         if label_param != 'cloud_probability':
@@ -466,13 +466,13 @@ class SRCNN:
         self.test_dataset = dataset
 
     def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples):
-        # self.train_data_files = train_data_files
-        # self.train_label_files = train_label_files
-        # self.test_data_files = test_data_files
-        # self.test_label_files = test_label_files
-
         self.train_data_files = train_data_files
+        self.train_label_files = train_label_files
         self.test_data_files = test_data_files
+        self.test_label_files = test_label_files
+
+        # self.train_data_files = train_data_files
+        # self.test_data_files = test_data_files
 
         trn_idxs = np.arange(len(train_data_files))
         np.random.shuffle(trn_idxs)
@@ -799,15 +799,15 @@ class SRCNN:
         return pred
 
     def run(self, directory, ckpt_dir=None, num_data_samples=50000):
-        # train_data_files = glob.glob(directory+'data_train*.npy')
-        # valid_data_files = glob.glob(directory+'data_valid*.npy')
-        # train_label_files = glob.glob(directory+'label_train*.npy')
-        # valid_label_files = glob.glob(directory+'label_valid*.npy')
-        # self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)
-
-        train_data_files = glob.glob(directory+'data_train_*.npy')
-        valid_data_files = glob.glob(directory+'data_valid_*.npy')
-        self.setup_pipeline(train_data_files, None, valid_data_files, None, num_data_samples)
+        train_data_files = glob.glob(directory+'data_train*.npy')
+        valid_data_files = glob.glob(directory+'data_valid*.npy')
+        train_label_files = glob.glob(directory+'label_train*.npy')
+        valid_label_files = glob.glob(directory+'label_valid*.npy')
+        self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)
+
+        # train_data_files = glob.glob(directory+'data_train_*.npy')
+        # valid_data_files = glob.glob(directory+'data_valid_*.npy')
+        # self.setup_pipeline(train_data_files, None, valid_data_files, None, num_data_samples)
 
         self.build_model()
         self.build_training()
-- 
GitLab