From 1308ba27631f5288ca6a7e87b0cfc9b80f4c915c Mon Sep 17 00:00:00 2001 From: tomrink <rink@ssec.wisc.edu> Date: Tue, 14 Mar 2023 12:10:54 -0500 Subject: [PATCH] snapshot... --- modules/deeplearning/cnn_cld_frac_mod_res.py | 94 ++++++++++---------- 1 file changed, 47 insertions(+), 47 deletions(-) diff --git a/modules/deeplearning/cnn_cld_frac_mod_res.py b/modules/deeplearning/cnn_cld_frac_mod_res.py index 703865d8..117cb25d 100644 --- a/modules/deeplearning/cnn_cld_frac_mod_res.py +++ b/modules/deeplearning/cnn_cld_frac_mod_res.py @@ -58,7 +58,6 @@ mean_std_dct.update(mean_std_dct_l1b) mean_std_dct.update(mean_std_dct_l2) IMG_DEPTH = 1 -# label_param = 'cloud_fraction' # label_param = 'cld_opd_dcomp' label_param = 'cloud_probability' @@ -66,8 +65,8 @@ params = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param] data_params_half = ['temp_11_0um_nom'] data_params_full = ['refl_0_65um_nom'] -label_idx = params.index(label_param) -# label_idx = 0 +# label_idx = params.index(label_param) +label_idx = 0 print('data_params_half: ', data_params_half) print('data_params_full: ', data_params_full) @@ -315,43 +314,44 @@ class SRCNN: tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) def get_in_mem_data_batch(self, idxs, is_training): + # if is_training: + # files = self.train_data_files + # else: + # files = self.test_data_files + # + # data_s = [] + # for k in idxs: + # f = files[k] + # try: + # nda = np.load(f) + # except Exception: + # print(f) + # continue + # data_s.append(nda) + # input_data = np.concatenate(data_s) + # input_label = input_data[:, label_idx, :, :] + if is_training: - files = self.train_data_files + data_files = self.train_data_files + label_files = self.train_label_files else: - files = self.test_data_files + data_files = self.test_data_files + label_files = self.test_label_files data_s = [] + label_s = [] for k in idxs: - f = files[k] - try: - nda = np.load(f) - except Exception: - print(f) - continue + f = data_files[k] + nda = np.load(f) data_s.append(nda) + + f = label_files[k] + nda = np.load(f) + label_s.append(nda) input_data = np.concatenate(data_s) + input_label = np.concatenate(label_s) input_label = input_data[:, label_idx, :, :] - # if is_training: - # data_files = self.train_data_files - # label_files = self.train_label_files - # else: - # data_files = self.test_data_files - # label_files = self.test_label_files - # - # data_s = [] - # label_s = [] - # for k in idxs: - # f = data_files[k] - # nda = np.load(f) - # data_s.append(nda) - # - # f = label_files[k] - # nda = np.load(f) - # label_s.append(nda) - # input_data = np.concatenate(data_s) - # input_label = np.concatenate(label_s) - data_norm = [] for param in data_params_half: idx = params.index(param) @@ -360,7 +360,7 @@ class SRCNN: if DO_ESPCN: tmp = tmp[:, slc_y_2, slc_x_2] else: # Half res upsampled to full res: - tmp = get_grid_cell_mean(tmp) + # tmp = get_grid_cell_mean(tmp) tmp = tmp[:, 0:66, 0:66] tmp = normalize(tmp, param, mean_std_dct) data_norm.append(tmp) @@ -387,7 +387,7 @@ class SRCNN: if DO_ESPCN: tmp = tmp[:, slc_y_2, slc_x_2] else: # Half res upsampled to full res: - tmp = get_grid_cell_mean(tmp) + # tmp = get_grid_cell_mean(tmp) tmp = np.where(np.isnan(tmp), 0, tmp) tmp = tmp[:, 0:66, 0:66] if label_param != 'cloud_probability': @@ -466,13 +466,13 @@ class SRCNN: self.test_dataset = dataset def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples): - # self.train_data_files = train_data_files - # self.train_label_files = train_label_files - # self.test_data_files = test_data_files - # self.test_label_files = test_label_files - self.train_data_files = train_data_files + self.train_label_files = train_label_files self.test_data_files = test_data_files + self.test_label_files = test_label_files + + # self.train_data_files = train_data_files + # self.test_data_files = test_data_files trn_idxs = np.arange(len(train_data_files)) np.random.shuffle(trn_idxs) @@ -799,15 +799,15 @@ class SRCNN: return pred def run(self, directory, ckpt_dir=None, num_data_samples=50000): - # train_data_files = glob.glob(directory+'data_train*.npy') - # valid_data_files = glob.glob(directory+'data_valid*.npy') - # train_label_files = glob.glob(directory+'label_train*.npy') - # valid_label_files = glob.glob(directory+'label_valid*.npy') - # self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples) - - train_data_files = glob.glob(directory+'data_train_*.npy') - valid_data_files = glob.glob(directory+'data_valid_*.npy') - self.setup_pipeline(train_data_files, None, valid_data_files, None, num_data_samples) + train_data_files = glob.glob(directory+'data_train*.npy') + valid_data_files = glob.glob(directory+'data_valid*.npy') + train_label_files = glob.glob(directory+'label_train*.npy') + valid_label_files = glob.glob(directory+'label_valid*.npy') + self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples) + + # train_data_files = glob.glob(directory+'data_train_*.npy') + # valid_data_files = glob.glob(directory+'data_valid_*.npy') + # self.setup_pipeline(train_data_files, None, valid_data_files, None, num_data_samples) self.build_model() self.build_training() -- GitLab