Skip to content
Snippets Groups Projects
Commit 0a417797 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 2ff47dde
Branches
No related tags found
No related merge requests found
......@@ -167,8 +167,8 @@ def match_amvs_to_raobs(raob_dict, raob_time, amv_files):
match_dict = {}
#fname, ftime, f_idx = amv_files.get_file_containing_time(raob_time)
# fname = '/Users/tomrink/data/OR_ABI-L2-DMWF-M6C14_G16_s20201190000156_e20201190009464_c20201190023107.nc'
fname = '/Users/tomrink/data/OR_ABI-L2-DMWF-M6C14_G16_s20201191200158_e20201191209466_c20201191223041.nc'
fname = '/Users/tomrink/data/OR_ABI-L2-DMWF-M6C14_G16_s20201190000156_e20201190009464_c20201190023107.nc'
# fname = '/Users/tomrink/data/OR_ABI-L2-DMWF-M6C14_G16_s20201191200158_e20201191209466_c20201191223041.nc'
ds = Dataset(fname)
......@@ -336,6 +336,7 @@ def analyze2(raob_to_amv_dct, raob_dct):
amvs_list = []
bf_list = []
raob_match_list = []
for key in keys:
rlat = key[0]
rlon = key[1]
......@@ -361,9 +362,19 @@ def analyze2(raob_to_amv_dct, raob_dct):
bspd, bdir = spd_dir_from_uv(bf[0], bf[1])
#print(amv_spd, bspd, amv_dir, bdir)
pdiff = amv_prs - raob_prs
lev_idx = np.argmin(np.abs(pdiff))
if np.abs(pdiff[lev_idx]) > 100.0:
tup = (raob_spd[lev_idx], raob_dir[lev_idx], raob_prs[lev_idx], -9)
else:
tup = (raob_spd[lev_idx], raob_dir[lev_idx], raob_prs[lev_idx], 0)
raob_match_list.append(tup)
amvs = np.concatenate(amvs_list, axis=1)
amvs = np.transpose(amvs, axes=[1, 0])
bfs = np.stack(bf_list, axis=0)
raob_match = np.stack(raob_match_list, axis=0)
good_amvs = amvs
num_good = good_amvs.shape[0]
......@@ -430,6 +441,7 @@ def analyze2(raob_to_amv_dct, raob_dct):
bf_spd, bf_dir = spd_dir_from_uv(bfs[keep_idxs, 0], bfs[keep_idxs, 1])
diff = amv_spd * units('m/s') - bf_spd
diff = diff.magnitude
spd_mad = np.average(np.abs(diff))
spd_bias = np.average(diff)
print('spd, MAD: {0:.2f}'.format(spd_mad))
......@@ -454,21 +466,23 @@ def analyze2(raob_to_amv_dct, raob_dct):
vd_mean = np.mean(vd)
vd_std = np.std(vd)
print('VD bias/rms: {0:.2f} {1:.2f}'.format(vd_mean, np.sqrt(vd_mean**2 + vd_std**2)))
print('------------------------------------------')
print('******************************************************')
x_values = []
num_pres = []
num_spd = []
num_dir = []
print('level num cases hgt MAD/bias spd MAD/bias dir MAD/bias')
print('-------------------------------------------------------------------')
for i in range(len(bin_ranges)):
x_values.append(np.average(bin_ranges[i]))
num_pres.append(bin_pres[i].shape[0])
num_spd.append(bin_spd[i].shape[0])
num_dir.append(bin_dir[i].shape[0])
#return x_values, bin_pres, num_pres, bin_spd, num_spd, bin_dir, num_dir
return amvs, bfs
print('{0:d} {1:d} {2:.2f}/{3:.2f} {4:.2f}/{5:.2f} {6:.2f}/{7:.2f}'
.format(int(x_values[i]), num_pres[i], np.average(np.abs(bin_pres[i])), np.average(bin_pres[i]),
np.average(np.abs(bin_spd[i])), np.average(bin_spd[i]), np.average(np.abs(bin_dir[i])), np.average(bin_dir[i])))
# imports the S4 NOAA output
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment