Skip to content
Snippets Groups Projects
Commit 0a417797 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 2ff47dde
No related branches found
No related tags found
No related merge requests found
...@@ -167,8 +167,8 @@ def match_amvs_to_raobs(raob_dict, raob_time, amv_files): ...@@ -167,8 +167,8 @@ def match_amvs_to_raobs(raob_dict, raob_time, amv_files):
match_dict = {} match_dict = {}
#fname, ftime, f_idx = amv_files.get_file_containing_time(raob_time) #fname, ftime, f_idx = amv_files.get_file_containing_time(raob_time)
# fname = '/Users/tomrink/data/OR_ABI-L2-DMWF-M6C14_G16_s20201190000156_e20201190009464_c20201190023107.nc' fname = '/Users/tomrink/data/OR_ABI-L2-DMWF-M6C14_G16_s20201190000156_e20201190009464_c20201190023107.nc'
fname = '/Users/tomrink/data/OR_ABI-L2-DMWF-M6C14_G16_s20201191200158_e20201191209466_c20201191223041.nc' # fname = '/Users/tomrink/data/OR_ABI-L2-DMWF-M6C14_G16_s20201191200158_e20201191209466_c20201191223041.nc'
ds = Dataset(fname) ds = Dataset(fname)
...@@ -336,6 +336,7 @@ def analyze2(raob_to_amv_dct, raob_dct): ...@@ -336,6 +336,7 @@ def analyze2(raob_to_amv_dct, raob_dct):
amvs_list = [] amvs_list = []
bf_list = [] bf_list = []
raob_match_list = []
for key in keys: for key in keys:
rlat = key[0] rlat = key[0]
rlon = key[1] rlon = key[1]
...@@ -361,9 +362,19 @@ def analyze2(raob_to_amv_dct, raob_dct): ...@@ -361,9 +362,19 @@ def analyze2(raob_to_amv_dct, raob_dct):
bspd, bdir = spd_dir_from_uv(bf[0], bf[1]) bspd, bdir = spd_dir_from_uv(bf[0], bf[1])
#print(amv_spd, bspd, amv_dir, bdir) #print(amv_spd, bspd, amv_dir, bdir)
pdiff = amv_prs - raob_prs
lev_idx = np.argmin(np.abs(pdiff))
if np.abs(pdiff[lev_idx]) > 100.0:
tup = (raob_spd[lev_idx], raob_dir[lev_idx], raob_prs[lev_idx], -9)
else:
tup = (raob_spd[lev_idx], raob_dir[lev_idx], raob_prs[lev_idx], 0)
raob_match_list.append(tup)
amvs = np.concatenate(amvs_list, axis=1) amvs = np.concatenate(amvs_list, axis=1)
amvs = np.transpose(amvs, axes=[1, 0]) amvs = np.transpose(amvs, axes=[1, 0])
bfs = np.stack(bf_list, axis=0) bfs = np.stack(bf_list, axis=0)
raob_match = np.stack(raob_match_list, axis=0)
good_amvs = amvs good_amvs = amvs
num_good = good_amvs.shape[0] num_good = good_amvs.shape[0]
...@@ -430,6 +441,7 @@ def analyze2(raob_to_amv_dct, raob_dct): ...@@ -430,6 +441,7 @@ def analyze2(raob_to_amv_dct, raob_dct):
bf_spd, bf_dir = spd_dir_from_uv(bfs[keep_idxs, 0], bfs[keep_idxs, 1]) bf_spd, bf_dir = spd_dir_from_uv(bfs[keep_idxs, 0], bfs[keep_idxs, 1])
diff = amv_spd * units('m/s') - bf_spd diff = amv_spd * units('m/s') - bf_spd
diff = diff.magnitude
spd_mad = np.average(np.abs(diff)) spd_mad = np.average(np.abs(diff))
spd_bias = np.average(diff) spd_bias = np.average(diff)
print('spd, MAD: {0:.2f}'.format(spd_mad)) print('spd, MAD: {0:.2f}'.format(spd_mad))
...@@ -454,21 +466,23 @@ def analyze2(raob_to_amv_dct, raob_dct): ...@@ -454,21 +466,23 @@ def analyze2(raob_to_amv_dct, raob_dct):
vd_mean = np.mean(vd) vd_mean = np.mean(vd)
vd_std = np.std(vd) vd_std = np.std(vd)
print('VD bias/rms: {0:.2f} {1:.2f}'.format(vd_mean, np.sqrt(vd_mean**2 + vd_std**2))) print('VD bias/rms: {0:.2f} {1:.2f}'.format(vd_mean, np.sqrt(vd_mean**2 + vd_std**2)))
print('------------------------------------------') print('******************************************************')
x_values = [] x_values = []
num_pres = [] num_pres = []
num_spd = [] num_spd = []
num_dir = [] num_dir = []
print('level num cases hgt MAD/bias spd MAD/bias dir MAD/bias')
print('-------------------------------------------------------------------')
for i in range(len(bin_ranges)): for i in range(len(bin_ranges)):
x_values.append(np.average(bin_ranges[i])) x_values.append(np.average(bin_ranges[i]))
num_pres.append(bin_pres[i].shape[0]) num_pres.append(bin_pres[i].shape[0])
num_spd.append(bin_spd[i].shape[0]) num_spd.append(bin_spd[i].shape[0])
num_dir.append(bin_dir[i].shape[0]) num_dir.append(bin_dir[i].shape[0])
#return x_values, bin_pres, num_pres, bin_spd, num_spd, bin_dir, num_dir print('{0:d} {1:d} {2:.2f}/{3:.2f} {4:.2f}/{5:.2f} {6:.2f}/{7:.2f}'
.format(int(x_values[i]), num_pres[i], np.average(np.abs(bin_pres[i])), np.average(bin_pres[i]),
return amvs, bfs np.average(np.abs(bin_spd[i])), np.average(bin_spd[i]), np.average(np.abs(bin_dir[i])), np.average(bin_dir[i])))
# imports the S4 NOAA output # imports the S4 NOAA output
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment