Skip to content
Snippets Groups Projects
icing.py 19.27 KiB
import tensorflow as tf
from util.setup import logdir, modeldir, cachepath
from util.util import homedir
import subprocess

import os, datetime
import numpy as np
import pickle
import h5py

from icing.pirep_goes import split_data, normalize

LOG_DEVICE_PLACEMENT = False

CACHE_DATA_IN_MEM = True

PROC_BATCH_SIZE = 10240
PROC_BATCH_BUFFER_SIZE = 50000
NumLabels = 1
BATCH_SIZE = 256
NUM_EPOCHS = 200

TRACK_MOVING_AVERAGE = False


TRIPLET = False
CONV3D = False

img_width = 16

mean_std_file = homedir+'data/icing/fovs_mean_std_day.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct = pickle.load(f)
f.close()

train_params = ['cld_height_acha', 'cld_geo_thick', 'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_press_acha',
                'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp', 'iwc_dcomp', 'lwc_dcomp']
                    #'cloud_phase']


def build_residual_block(input, drop_rate, num_neurons, activation, block_name, doDropout=True, doBatchNorm=True):
    with tf.name_scope(block_name):
        if doDropout:
            fc = tf.keras.layers.Dropout(drop_rate)(input)
            fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc)
        else:
            fc = tf.keras.layers.Dense(num_neurons, activation=activation)(input)
        if doBatchNorm:
            fc = tf.keras.layers.BatchNormalization()(fc)
        print(fc.shape)
        fc_skip = fc

        if doDropout:
            fc = tf.keras.layers.Dropout(drop_rate)(fc)
        fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc)
        if doBatchNorm:
            fc = tf.keras.layers.BatchNormalization()(fc)
        print(fc.shape)

        if doDropout:
            fc = tf.keras.layers.Dropout(drop_rate)(fc)
        fc = tf.keras.layers.Dense(num_neurons, activation=activation)(fc)
        if doBatchNorm:
            fc = tf.keras.layers.BatchNormalization()(fc)
        print(fc.shape)

        if doDropout:
            fc = tf.keras.layers.Dropout(drop_rate)(fc)
        fc = tf.keras.layers.Dense(num_neurons, activation=None)(fc)
        if doBatchNorm:
            fc = tf.keras.layers.BatchNormalization()(fc)

        fc = fc + fc_skip
        fc = tf.keras.layers.LeakyReLU()(fc)
        print(fc.shape)

    return fc


class IcingIntensityNN:
    
    def __init__(self, gpu_device=0, datapath=None):
        self.train_data = None
        self.train_label = None
        self.test_data = None
        self.test_label = None
        self.test_data_denorm = None
        
        self.train_dataset = None
        self.inner_train_dataset = None
        self.test_dataset = None
        self.X_img = None
        self.X_prof = None
        self.X_u = None
        self.X_v = None
        self.X_sfc = None
        self.inputs = []
        self.y = None
        self.handle = None
        self.inner_handle = None
        self.in_mem_batch = None
        self.filename = None
        self.h5f = None
        self.h5f_l1b = None

        self.logits = None

        self.predict_data = None
        self.predict_dataset = None
        self.mean_list = None
        self.std_list = None
        
        self.training_op = None
        self.correct = None
        self.accuracy = None
        self.loss = None
        self.pred_class = None
        self.gpu_device = gpu_device
        self.variable_averages = None

        self.global_step = None

        self.writer_train = None
        self.writer_valid = None

        self.OUT_OF_RANGE = False

        self.abi = None
        self.temp = None
        self.wv = None
        self.lbfp = None
        self.sfc = None

        self.in_mem_data_cache = {}

        self.model = None
        self.optimizer = None
        self.train_loss = None
        self.train_accuracy = None
        self.test_loss = None
        self.test_accuracy = None
        self.test_auc = None
        self.test_recall = None
        self.test_precision = None

        self.learningRateSchedule = None
        self.num_data_samples = None
        self.initial_learning_rate = None

        n_chans = len(train_params)
        NUM_PARAMS = 1
        if TRIPLET:
            n_chans *= 3
        #self.X_img = tf.keras.Input(shape=(img_width, img_width, n_chans))
        self.X_img = tf.keras.Input(shape=n_chans)
        #self.X_prof = tf.keras.Input(shape=(NUM_VERT_LEVELS, NUM_VERT_PARAMS))
        #self.X_sfc = tf.keras.Input(shape=2)

        self.inputs.append(self.X_img)
        #self.inputs.append(self.X_prof)

        self.DISK_CACHE = False

        if datapath is not None:
            self.DISK_CACHE = False
            f = open(datapath, 'rb')
            self.in_mem_data_cache = pickle.load(f)
            f.close()

        tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)

        gpus = tf.config.experimental.list_physical_devices('GPU')
        if gpus:
            try:
                # Currently, memory growth needs to be the same across GPUs
                for gpu in gpus:
                    tf.config.experimental.set_memory_growth(gpu, True)
                logical_gpus = tf.config.experimental.list_logical_devices('GPU')
                print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
            except RuntimeError as e:
                # Memory growth must be set before GPUs have been initialized
                print(e)

    def get_in_mem_data_batch(self, idxs):
        key = frozenset(idxs)

        if CACHE_DATA_IN_MEM:
            tup = self.in_mem_data_cache.get(key)
            if tup is not None:
                return tup[0], tup[1]

        # sort these to use as numpy indexing arrays
        nd_idxs = np.array(idxs)
        nd_idxs = np.sort(nd_idxs)

        data = []
        for param in train_params:
            nda = self.h5f[param][nd_idxs, ]
            nda = normalize(nda, param, mean_std_dct)
            data.append(nda)
        data = np.stack(data)
        data = data.astype(np.float32)
        data = np.transpose(data, axes=(1, 0))

        label = self.h5f['icing_intensity'][nd_idxs]
        label = label.astype(np.int32)
        label = np.where(label == -1, 0, label)

        # binary, two class
        label = np.where(label != 0, 1, label)
        label = label.reshape((label.shape[0], 1))

        if CACHE_DATA_IN_MEM:
            self.in_mem_data_cache[key] = (data, label)

        return data, label

    @tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
    def data_function(self, indexes):
        out = tf.numpy_function(self.get_in_mem_data_batch, [indexes], [tf.float32, tf.int32])
        return out

    def get_train_dataset(self, indexes):
        indexes = list(indexes)

        dataset = tf.data.Dataset.from_tensor_slices(indexes)
        dataset = dataset.batch(PROC_BATCH_SIZE)
        dataset = dataset.map(self.data_function, num_parallel_calls=8)
        dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
        dataset = dataset.prefetch(buffer_size=1)
        self.train_dataset = dataset

    def get_test_dataset(self, indexes):
        indexes = list(indexes)

        dataset = tf.data.Dataset.from_tensor_slices(indexes)
        dataset = dataset.batch(PROC_BATCH_SIZE)
        dataset = dataset.map(self.data_function, num_parallel_calls=8)
        self.test_dataset = dataset

    def setup_pipeline(self, filename, train_idxs=None, test_idxs=None):
        self.filename = filename
        self.h5f = h5py.File(filename, 'r')
        time = self.h5f['time']
        num_obs = time.shape[0]
        trn_idxs, tst_idxs = split_data(num_obs, skip=4)
        self.num_data_samples = trn_idxs.shape[0]

        self.get_train_dataset(trn_idxs)
        self.get_test_dataset(tst_idxs)

        print('num train samples: ', self.num_data_samples)
        print('BATCH SIZE: ', BATCH_SIZE)
        print('num test samples: ', tst_idxs.shape[0])
        print('setup_pipeline: Done')

    def build_1d_cnn(self):
        print('build_1d_cnn')
        # padding = 'VALID'
        padding = 'SAME'

        # activation = tf.nn.relu
        # activation = tf.nn.elu
        activation = tf.nn.leaky_relu

        num_filters = 6

        conv = tf.keras.layers.Conv1D(num_filters, 5, strides=1, padding=padding)(self.inputs[1])
        conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
        print(conv)

        num_filters *= 2
        conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv)
        conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
        print(conv)

        num_filters *= 2
        conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv)
        conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
        print(conv)

        num_filters *= 2
        conv = tf.keras.layers.Conv1D(num_filters, 3, strides=1, padding=padding)(conv)
        conv = tf.keras.layers.MaxPool1D(padding=padding)(conv)
        print(conv)

        flat = tf.keras.layers.Flatten()(conv)
        print(flat)

        return flat

    def build_dnn(self, input_layer=None):
        print('build fully connected layer')
        drop_rate = 0.5

        # activation = tf.nn.relu
        # activation = tf.nn.elu
        activation = tf.nn.leaky_relu
        momentum = 0.99
        
        if input_layer is not None:
            flat = input_layer
            n_hidden = input_layer.shape[1]
        else:
            flat = self.X_img
            n_hidden = self.X_img.shape[1]

        fac = 2

        fc = build_residual_block(flat, drop_rate, fac*n_hidden, activation, 'Residual_Block_1', doBatchNorm=True)

        fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_2', doBatchNorm=True)

        fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_3', doBatchNorm=True)

        fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_4', doBatchNorm=True)

        fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_5', doBatchNorm=True)

        fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_6', doBatchNorm=True)

        fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_7', doBatchNorm=True)

        fc = build_residual_block(fc, drop_rate, fac*n_hidden, activation, 'Residual_Block_8', doBatchNorm=True)

        fc = tf.keras.layers.Dense(n_hidden, activation=activation)(fc)
        fc = tf.keras.layers.BatchNormalization()(fc)
        print(fc.shape)

        # activation = tf.nn.softmax
        activation = tf.nn.sigmoid  # For binary

        logits = tf.keras.layers.Dense(NumLabels, activation=activation)(fc)
        print(logits.shape)
        
        self.logits = logits

    def build_training(self):
        self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False)  # for two-class only
        #self.loss = tf.keras.losses.SparseCategoricalCrossentropy()  # For multi-class

        # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
        initial_learning_rate = 0.002
        decay_rate = 0.95
        steps_per_epoch = int(self.num_data_samples/BATCH_SIZE)  # one epoch
        # decay_steps = int(steps_per_epoch / 2)
        decay_steps = 4 * steps_per_epoch
        print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)

        self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)

        optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule)

        if TRACK_MOVING_AVERAGE:
            ema = tf.train.ExponentialMovingAverage(decay=0.999)

            with tf.control_dependencies([optimizer]):
                optimizer = ema.apply(self.model.trainable_variables)

        self.optimizer = optimizer
        self.initial_learning_rate = initial_learning_rate

    def build_evaluation(self):
        self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
        self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
        self.test_auc = tf.keras.metrics.AUC(name='test_auc')
        self.test_recall = tf.keras.metrics.Recall(name='test_recall')
        self.test_precision = tf.keras.metrics.Precision(name='test_precision')
        self.train_loss = tf.keras.metrics.Mean(name='train_loss')
        self.test_loss = tf.keras.metrics.Mean(name='test_loss')

    def build_predict(self):
        _, pred = tf.nn.top_k(self.logits)
        self.pred_class = pred

        if TRACK_MOVING_AVERAGE:
            self.variable_averages = tf.train.ExponentialMovingAverage(0.999, self.global_step)
            self.variable_averages.apply(self.model.trainable_variables)

    @tf.function
    def train_step(self, mini_batch):
        inputs = [mini_batch[0]]
        labels = mini_batch[1]
        with tf.GradientTape() as tape:
            pred = self.model(inputs, training=True)
            loss = self.loss(labels, pred)
            total_loss = loss
            if len(self.model.losses) > 0:
                reg_loss = tf.math.add_n(self.model.losses)
                total_loss = loss + reg_loss
        gradients = tape.gradient(total_loss, self.model.trainable_variables)
        self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))

        self.train_loss(loss)
        self.train_accuracy(labels, pred)

        return loss

    @tf.function
    def test_step(self, mini_batch):
        inputs = [mini_batch[0]]
        labels = mini_batch[1]
        pred = self.model(inputs, training=False)
        t_loss = self.loss(labels, pred)

        self.test_loss(t_loss)
        self.test_accuracy(labels, pred)
        self.test_auc(labels, pred)
        self.test_recall(labels, pred)
        self.test_precision(labels, pred)

    def predict(self, mini_batch):
        inputs = [mini_batch[0]]
        labels = mini_batch[1]
        pred = self.model(inputs, training=False)
        t_loss = self.loss(labels, pred)

    def do_training(self, ckpt_dir=None):

        if ckpt_dir is None:
            if not os.path.exists(modeldir):
                os.mkdir(modeldir)
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
        else:
            ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
            ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)

        self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train'))
        self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid'))

        step = 0
        total_time = 0

        for epoch in range(NUM_EPOCHS):
            self.train_loss.reset_states()
            self.train_accuracy.reset_states()

            t0 = datetime.datetime.now().timestamp()

            proc_batch_cnt = 0
            n_samples = 0

            for data0, label in self.train_dataset:
                trn_ds = tf.data.Dataset.from_tensor_slices((data0, label))
                trn_ds = trn_ds.batch(BATCH_SIZE)
                for mini_batch in trn_ds:
                    if self.learningRateSchedule is not None:
                        loss = self.train_step(mini_batch)

                    if (step % 100) == 0:

                        with self.writer_train.as_default():
                            tf.summary.scalar('loss_trn', loss.numpy(), step=step)
                            tf.summary.scalar('num_train_steps', step, step=step)
                            tf.summary.scalar('num_epochs', epoch, step=step)

                        self.test_loss.reset_states()
                        self.test_accuracy.reset_states()

                        for data0_tst, label_tst in self.test_dataset:
                            tst_ds = tf.data.Dataset.from_tensor_slices((data0_tst, label_tst))
                            tst_ds = tst_ds.batch(BATCH_SIZE)
                            for mini_batch_test in tst_ds:
                                self.test_step(mini_batch_test)

                        with self.writer_valid.as_default():
                            tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
                            tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
                            tf.summary.scalar('num_train_steps', step, step=step)
                            tf.summary.scalar('num_epochs', epoch, step=step)

                        print('****** test loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())

                    step += 1
                    print('train loss: ', loss.numpy())

                proc_batch_cnt += 1
                n_samples += data0.shape[0]
                print('proc_batch_cnt: ', proc_batch_cnt, n_samples)

            t1 = datetime.datetime.now().timestamp()
            print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
            total_time += (t1-t0)

            self.test_loss.reset_states()
            self.test_accuracy.reset_states()
            for data0, label in self.test_dataset:
                ds = tf.data.Dataset.from_tensor_slices((data0, label))
                ds = ds.batch(BATCH_SIZE)
                for mini_batch in ds:
                    self.test_step(mini_batch)

            print('loss, acc : ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
            print('---------------------------------------------------------')
            ckpt_manager.save()

            if self.DISK_CACHE and epoch == 0:
                f = open(cachepath, 'wb')
                pickle.dump(self.in_mem_data_cache, f)
                f.close()

        print('total time: ', total_time)
        self.writer_train.close()
        self.writer_valid.close()

    def build_model(self):
        # flat = self.build_cnn()
        # flat_1d = self.build_1d_cnn()
        # flat = tf.keras.layers.concatenate([flat, flat_1d, flat_anc])
        # flat = tf.keras.layers.concatenate([flat, flat_1d])
        # self.build_dnn(flat)
        self.build_dnn()
        self.model = tf.keras.Model(self.inputs, self.logits)

    def restore(self, ckpt_dir):

        ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
        ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)

        ckpt.restore(ckpt_manager.latest_checkpoint)

        self.test_loss.reset_states()
        self.test_accuracy.reset_states()

        for abi_tst, temp_tst, lbfp_tst in self.test_dataset:
            ds = tf.data.Dataset.from_tensor_slices((abi_tst, temp_tst, lbfp_tst))
            ds = ds.batch(BATCH_SIZE)
            for mini_batch_test in ds:
                self.predict(mini_batch_test)
        print('loss, acc: ', self.test_loss.result(), self.test_accuracy.result())

    def run(self, filename, filename_l1b=None, train_dict=None, valid_dict=None):
        with tf.device('/device:GPU:'+str(self.gpu_device)):
            self.setup_pipeline(filename, train_idxs=train_dict, test_idxs=valid_dict)
            self.build_model()
            self.build_training()
            self.build_evaluation()
            self.do_training()

    def run_restore(self, matchup_dict, ckpt_dir):
        self.setup_pipeline(None, None, matchup_dict)
        self.build_model()
        self.build_training()
        self.build_evaluation()
        self.restore(ckpt_dir)


if __name__ == "__main__":
    nn = IcingIntensityNN()
    nn.run('matchup_filename')