Skip to content
Snippets Groups Projects
Commit eaee2230 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 14d7a1f5
No related branches found
No related tags found
No related merge requests found
...@@ -207,12 +207,6 @@ class IcingIntensityNN: ...@@ -207,12 +207,6 @@ class IcingIntensityNN:
label = np.where(label == -1, 0, label) label = np.where(label == -1, 0, label)
# binary, two class # binary, two class
# label = np.where(label != 0, 1, label)
# label = label.reshape((label.shape[0], 1))
keep = (label == 0) | (label == 3) | (label == 4) | (label == 5) | (label == 6)
data = data[keep,]
label = label[keep]
label = np.where(label != 0, 1, label) label = np.where(label != 0, 1, label)
label = label.reshape((label.shape[0], 1)) label = label.reshape((label.shape[0], 1))
...@@ -295,51 +289,6 @@ class IcingIntensityNN: ...@@ -295,51 +289,6 @@ class IcingIntensityNN:
return flat return flat
def build_cnn(self):
print('build_cnn')
# padding = "VALID"
padding = "SAME"
# activation = tf.nn.relu
# activation = tf.nn.elu
activation = tf.nn.leaky_relu
momentum = 0.99
num_filters = 8
conv = tf.keras.layers.Conv2D(num_filters, 5, strides=[1, 1], padding=padding, activation=activation)(self.inputs[0])
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
num_filters *= 2
conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
num_filters *= 2
conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
num_filters *= 2
conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
num_filters *= 2
conv = tf.keras.layers.Conv2D(num_filters, 3, strides=[1, 1], padding=padding, activation=activation)(conv)
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
flat = tf.keras.layers.Flatten()(conv)
return flat
def build_dnn(self, input_layer=None): def build_dnn(self, input_layer=None):
print('build fully connected layer') print('build fully connected layer')
drop_rate = 0.5 drop_rate = 0.5
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment