Newer
Older
from metpy.units import units
from metpy.calc import thickness_hydrostatic
LatLonTuple = namedtuple('LatLonTuple', ['lat', 'lon'])
class EarlyStop:
def __init__(self, window_length=3, patience=5):
self.patience = patience
self.cnt = 0
self.cnt_wait = 0
self.window = np.zeros(window_length, dtype=np.single)
self.window.fill(np.nan)
def check_stop(self, value):
self.window[:-1] = self.window[1:]
self.window[-1] = value
if np.any(np.isnan(self.window)):
return False
ave = np.mean(self.window)
if ave < self.min:
self.min = ave
self.cnt_wait = 0
return False
else:
self.cnt_wait += 1
if self.cnt_wait > self.patience:
return True
else:
return False
def get_time_tuple_utc(timestamp):
dt_obj = datetime.datetime.fromtimestamp(timestamp, timezone.utc)
return dt_obj, dt_obj.timetuple()
def get_datetime_obj(dt_str, format_code='%Y-%m-%d_%H:%M'):
dto = datetime.datetime.strptime(dt_str, format_code).replace(tzinfo=timezone.utc)
return dto
def get_timestamp(dt_str, format_code='%Y-%m-%d_%H:%M'):
dto = datetime.datetime.strptime(dt_str, format_code).replace(tzinfo=timezone.utc)
ts = dto.timestamp()
return ts
def add_time_range_to_filename(pathname, tstart, tend=None):
filename = os.path.split(pathname)[1]
w_o_ext, ext = os.path.splitext(filename)
dt_obj, _ = get_time_tuple_utc(tstart)
str_start = dt_obj.strftime('%Y%m%d%H')
if tend is not None:
dt_obj, _ = get_time_tuple_utc(tend)
str_end = dt_obj.strftime('%Y%m%d%H')
filename = filename+'_'+str_end
filename = filename+ext
path = os.path.split(pathname)[0]
path = path+'/'+filename
return path
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
def haversine_np(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
(lon1, lat1) must be broadcastable with (lon2, lat2).
"""
lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2
c = 2 * np.arcsin(np.sqrt(a))
km = 6367 * c
return km
def bin_data_by(a, b, bin_ranges):
nbins = len(bin_ranges)
binned_data = []
for i in range(nbins):
rng = bin_ranges[i]
idxs = (b >= rng[0]) & (b < rng[1])
binned_data.append(a[idxs])
return binned_data
def bin_data_by_edges(a, b, edges):
nbins = len(edges) - 1
binned_data = []
for i in range(nbins):
idxs = (b >= edges[i]) & (b < edges[i+1])
binned_data.append(a[idxs])
return binned_data
def get_bin_ranges(lop, hip, bin_size=100):
bin_ranges = []
delp = hip - lop
nbins = int(delp/bin_size)
for i in range(nbins):
rng = [lop + i*bin_size, lop + i*bin_size + bin_size]
bin_ranges.append(rng)
return bin_ranges
# t must be monotonic increasing
def get_breaks(t, threshold):
t_0 = t[0:t.shape[0]-1]
t_1 = t[1:t.shape[0]]
d = t_1 - t_0
idxs = np.nonzero(d > threshold)
return idxs
# return indexes of ts where value is within ts[i] - threshold < value < ts[i] + threshold
def pressure_to_altitude(pres, temp, prof_pres, prof_temp, sfc_pres=None, sfc_temp=None, sfc_elev=0):
raise GenericException("target pressure profile must be monotonic increasing")
raise GenericException("target pressure less than top of pressure profile")
if temp is None:
temp = np.interp(pres, prof_pres, prof_temp)
i_top = np.argmax(np.extract(prof_pres <= pres, prof_pres)) + 1
pres_s = prof_pres.tolist()
temp_s = prof_temp.tolist()
pres_s = [pres] + pres_s[i_top:]
temp_s = [temp] + temp_s[i_top:]
return -1
prof_pres = np.array(pres_s)
prof_temp = np.array(temp_s)
i_bot = prof_pres.shape[0] - 1
pres_s = pres_s + [sfc_pres]
temp_s = temp_s + [sfc_temp]
else:
idx = np.argmax(np.extract(prof_pres < sfc_pres, prof_pres))
if sfc_temp is None:
sfc_temp = np.interp(sfc_pres, prof_pres, prof_temp)
pres_s = prof_pres.tolist()
temp_s = prof_temp.tolist()
pres_s = pres_s[0:idx+1] + [sfc_pres]
temp_s = temp_s[0:idx+1] + [sfc_temp]
prof_pres = np.array(pres_s)
prof_temp = np.array(temp_s)
prof_pres = prof_pres[::-1]
prof_temp = prof_temp[::-1]
prof_pres = prof_pres * units.hectopascal
prof_temp = prof_temp * units.kelvin
sfc_elev = sfc_elev * units.meter
z = thickness_hydrostatic(prof_pres, prof_temp) + sfc_elev
return z
# http://fourier.eng.hmc.edu/e176/lectures/NM/node25.html
def minimize_quadratic(xa, xb, xc, ya, yb, yc):
x_m = xb + 0.5*(((ya-yb)*(xc-xb)*(xc-xb) - (yc-yb)*(xb-xa)*(xb-xa)) / ((ya-yb)*(xc-xb) + (yc-yb)*(xb-xa)))
def value_to_index(nda, value):
diff = np.abs(nda - value)
idx = np.argmin(diff)
for k, v in enumerate(value_s):
above = v >= nda
if not above.any():
continue
# array solzen must be degrees, missing values must NaN. For small roughly 50x50km regions only
def is_day(solzen, test_angle=80.0):
solzen = solzen.flatten()
solzen = solzen[np.invert(np.isnan(solzen))]
if len(solzen) == 0 or np.sum(solzen <= test_angle) < len(solzen):
# array solzen must be degrees, missing values must NaN. For small roughly 50x50km regions only
solzen = solzen.flatten()
solzen = solzen[np.invert(np.isnan(solzen))]
if len(solzen) == 0 or np.sum(solzen >= test_angle) < len(solzen):
def check_oblique(satzen, test_angle=70.0):
satzen = satzen.flatten()
satzen = satzen[np.invert(np.isnan(satzen))]
if len(satzen) == 0 or np.sum(satzen <= test_angle) < len(satzen):
return False
else:
return True
def get_grid_values_all(h5f, grid_name, scale_factor_name='scale_factor', add_offset_name='add_offset',
fill_value_name='_FillValue', range_name='actual_range', fill_value=None, stride=None):
hfds = h5f[grid_name]
attrs = hfds.attrs
if attrs is None:
raise GenericException('No attributes object for: '+grid_name)
if stride is None:
grd_vals = hfds[:,]
else:
grd_vals = hfds[::stride, ::stride]
if fill_value is not None:
grd_vals = np.where(grd_vals == fill_value, np.nan, grd_vals)
attr = attrs.get(scale_factor_name)
if attr is None:
raise GenericException('Attribute: '+scale_factor_name+' not found for variable: '+grid_name)
if np.isscalar(attr):
scale_factor = attr
else:
scale_factor = attr[0]
grd_vals = grd_vals * scale_factor
if add_offset_name is not None:
attr = attrs.get(add_offset_name)
if attr is None:
raise GenericException('Attribute: '+add_offset_name+' not found for variable: '+grid_name)
if np.isscalar(attr):
add_offset = attr
else:
add_offset = attr[0]
if range_name is not None:
attr = attrs.get(range_name)
if attr is not None:
low = attr[0]
high = attr[1]
grd_vals = np.where(grd_vals < low, np.nan, grd_vals)
grd_vals = np.where(grd_vals > high, np.nan, grd_vals)
elif fill_value_name is not None:
attr = attrs.get(fill_value_name)
if attr is not None:
if np.isscalar(attr):
fill_value = attr
else:
fill_value = attr[0]
grd_vals = np.where(grd_vals == fill_value, np.nan, grd_vals)
# dt_str_0: start datetime string in format YYYY-MM-DD_HH:MM
# dt_str_1: stop datetime string, if not None num_steps is computed
# return num_steps+1 lists of datetime strings and timestamps (edges of a numpy histogram)
def make_times(dt_str_0, dt_str_1=None, format_code='%Y-%m-%d_%H:%M', num_steps=None, days=None, hours=None, minutes=None, seconds=None):
if days is not None:
inc = 86400*days
elif hours is not None:
inc = 3600*hours
elif minutes is not None:
inc = 60*minutes
else:
inc = seconds
dt_obj_s = []
ts_s = []
dto_0 = datetime.datetime.strptime(dt_str_0, format_code).replace(tzinfo=timezone.utc)
dto_1 = datetime.datetime.strptime(dt_str_1, format_code).replace(tzinfo=timezone.utc)
dt_obj_s.append(dto_0)
ts_s.append(ts_0)
dto_last = dto_0
for k in range(num_steps):
dt_obj = dto_last + datetime.timedelta(seconds=inc)
dt_obj_s.append(dt_obj)
ts_s.append(dt_obj.timestamp())
dto_last = dt_obj
return dt_obj_s, ts_s
def make_histogram(values, edges):
h = np.histogram(values, bins=edges)
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
return h
def normalize(data, param, mean_std_dict, add_noise=False, noise_scale=1.0, seed=None):
if mean_std_dict.get(param) is None:
return data
shape = data.shape
data = data.flatten()
mean, std, lo, hi = mean_std_dict.get(param)
data -= mean
data /= std
if add_noise:
if seed is not None:
np.random.seed(seed)
rnd = np.random.normal(loc=0, scale=noise_scale, size=data.size)
data += rnd
not_valid = np.isnan(data)
data[not_valid] = 0
data = np.reshape(data, shape)
def denormalize(data, param, mean_std_dict):
if mean_std_dict.get(param) is None:
return data
shape = data.shape
data = data.flatten()
mean, std, lo, hi = mean_std_dict.get(param)
data *= std
data += mean
data = np.reshape(data, shape)
return data
def scale(data, param, mean_std_dict):
if mean_std_dict.get(param) is None:
return data
shape = data.shape
data = data.flatten()
if mean_std_dict is None:
lo = np.nanmin(data)
hi = np.nanmax(data)
_, _, lo, hi = mean_std_dict.get(param)
data -= lo
data /= (hi - lo)
not_valid = np.isnan(data)
data[not_valid] = 0
data = np.reshape(data, shape)
return data
f = open(ancillary_path+'geos_crs_goes16_FD.pkl', 'rb')
geos_goes16_fd = pickle.load(f)
f.close()
f = open(ancillary_path+'geos_crs_goes16_CONUS.pkl', 'rb')
geos_goes16_conus = pickle.load(f)
f.close()
f = open(ancillary_path+'geos_crs_H08_FD.pkl', 'rb')
geos_h08_fd = pickle.load(f)
f.close()
def get_cartopy_crs(satellite, domain):
if satellite == 'GOES16':
if domain == 'FD':
geos = geos_goes16_fd
xlen = 5424
xmin = -5433893.0
ylen = 5424
ymin = -5433893.0
ymax = 5433893.0
elif domain == 'CONUS':
geos = geos_goes16_conus
xlen = 2500
xmin = -3626269.5
xmax = 1381770.0
ylen = 1500
ymin = 1584175.9
ymax = 4588198.0
elif satellite == 'H08':
geos = geos_h08_fd
xlen = 5500
xmin = -5498.99990119
xmax = 5498.99990119
ylen = 5500
ymin = -5498.99990119
ymax = 5498.99990119
return geos, xlen, xmin, xmax, ylen, ymin, ymax
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
def get_grid_values(h5f, grid_name, j_c, i_c, half_width, num_j=None, num_i=None, scale_factor_name='scale_factor', add_offset_name='add_offset',
fill_value_name='_FillValue', range_name='actual_range', fill_value=None):
hfds = h5f[grid_name]
attrs = hfds.attrs
if attrs is None:
raise GenericException('No attributes object for: '+grid_name)
ylen, xlen = hfds.shape
if half_width is not None:
j_l = j_c-half_width
i_l = i_c-half_width
if j_l < 0 or i_l < 0:
return None
j_r = j_c+half_width+1
i_r = i_c+half_width+1
if j_r >= ylen or i_r >= xlen:
return None
else:
j_l = j_c
j_r = j_c + num_j + 1
i_l = i_c
i_r = i_c + num_i + 1
grd_vals = hfds[j_l:j_r, i_l:i_r]
if fill_value is not None:
grd_vals = np.where(grd_vals == fill_value, np.nan, grd_vals)
if scale_factor_name is not None:
attr = attrs.get(scale_factor_name)
if attr is not None:
if np.isscalar(attr):
scale_factor = attr
else:
scale_factor = attr[0]
grd_vals = grd_vals * scale_factor
print('Attribute: ' + scale_factor_name + ' not found for dataset: ' + grid_name)
if add_offset_name is not None:
attr = attrs.get(add_offset_name)
if attr is not None:
if np.isscalar(attr):
add_offset = attr
else:
add_offset = attr[0]
grd_vals = grd_vals + add_offset
print('Attribute: '+add_offset_name+' not found for dataset: '+grid_name)
if range_name is not None:
attr = attrs.get(range_name)
if attr is not None:
low = attr[0]
high = attr[1]
grd_vals = np.where(grd_vals < low, np.nan, grd_vals)
grd_vals = np.where(grd_vals > high, np.nan, grd_vals)
else:
print('Attribute: '+range_name+' not found for dataset: '+grid_name)
elif fill_value_name is not None:
attr = attrs.get(fill_value_name)
if attr is not None:
if np.isscalar(attr):
fill_value = attr
else:
fill_value = attr[0]
grd_vals = np.where(grd_vals == fill_value, np.nan, grd_vals)
print('Attribute: '+fill_value_name+' not found for dataset: '+grid_name)
def concat_dict_s(t_dct_0, t_dct_1):
keys_0 = list(t_dct_0.keys())
nda_0 = np.array(keys_0)
keys_1 = list(t_dct_1.keys())
nda_1 = np.array(keys_1)
comm_keys, comm0, comm1 = np.intersect1d(nda_0, nda_1, return_indices=True)
comm_keys = comm_keys.tolist()
for key in comm_keys:
t_dct_1.pop(key)
t_dct_0.update(t_dct_1)
return t_dct_0
# Example GOES file to retrieve GEOS parameters in MetPy form (CONUS)
exmp_file_conus = '/Users/tomrink/data/OR_ABI-L1b-RadC-M6C14_G16_s20193140811215_e20193140813588_c20193140814070.nc'
# Full Disk
exmp_file_fd = '/Users/tomrink/data/OR_ABI-L1b-RadF-M6C16_G16_s20212521800223_e20212521809542_c20212521809596.nc'
# keep for reference
# if domain == 'CONUS':
# exmpl_ds = xr.open_dataset(exmp_file_conus)
# elif domain == 'FD':
# exmpl_ds = xr.open_dataset(exmp_file_fd)
# mdat = exmpl_ds.metpy.parse_cf('Rad')
# geos = mdat.metpy.cartopy_crs
# xlen = mdat.x.values.size
# ylen = mdat.y.values.size
# exmpl_ds.close()
# Taiwan domain:
# lon, lat = 120.955098, 23.834310
# elem, line = (1789, 1505)
# # UR from Taiwan
taiwan_lenx = 1420
taiwan_leny = 1020
# geos.transform_point(135.0, 35.0, ccrs.PlateCarree(), False)
# geos.transform_point(106.61, 13.97, ccrs.PlateCarree(), False)
taiwain_extent = [-3342, -502, 1470, 3510] # GEOS coordinates, not line, elem
# ------------ This code will not be needed when we implement a Fully Convolutional CNN -----------------------------------
def make_for_full_domain_predict(h5f, name_list=None, satellite='GOES16', domain='FD', res_fac=1):
geos, xlen, xmin, xmax, ylen, ymin, ymax = get_cartopy_crs(satellite, domain)
if satellite == 'H08':
xlen = taiwan_lenx
ylen = taiwan_leny
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
cnt_a = 0
for ds_name in name_list:
gvals = get_grid_values(h5f, ds_name, j_0, i_0, None, num_j=ylen, num_i=xlen)
if gvals is not None:
grd_dct[ds_name] = gvals
cnt_a += 1
if cnt_a > 0 and cnt_a != len(name_list):
raise GenericException('weirdness')
grd_dct_n = {name: [] for name in name_list}
n_x = int(xlen/s_x) - 1
n_y = int(ylen/s_y) - 1
r_x = xlen - (n_x * s_x)
x_d = 0 if r_x >= w_x else int((w_x - r_x)/s_x)
n_x -= x_d
r_y = ylen - (n_y * s_y)
y_d = 0 if r_y >= w_y else int((w_y - r_y)/s_y)
n_y -= y_d
ll = [j_0 + j*s_y for j in range(n_y)]
cc = [i_0 + i*s_x for i in range(n_x)]
for ds_name in name_list:
for j in range(n_y):
j_ul = j * s_y
j_ul_b = j_ul + w_y
for i in range(n_x):
i_ul = i * s_x
i_ul_b = i_ul + w_x
grd_dct_n[ds_name].append(grd_dct[ds_name][j_ul:j_ul_b, i_ul:i_ul_b])
grd_dct = {name: None for name in name_list}
for ds_name in name_list:
grd_dct[ds_name] = np.stack(grd_dct_n[ds_name])
return grd_dct, ll, cc
# rho_water = 1.
# rho_ice = 0.917
rho_water = 1000000.0 # g m^-3
rho_ice = 917000.0 # g m^-3
# real(kind=real4), parameter:: Rho_Water = 1.0 !g / m ^ 3
# real(kind=real4), parameter:: Rho_Ice = 0.917 !g / m ^ 3
#
# !--- compute
# cloud
# water
# path
# if (Iphase == 0) then
# Cwp_Dcomp(Elem_Idx, Line_Idx) = 0.55 * Tau * Reff * Rho_Water
# Lwp_Dcomp(Elem_Idx, Line_Idx) = 0.55 * Tau * Reff * Rho_Water
# else
# Cwp_Dcomp(Elem_Idx, Line_Idx) = 0.667 * Tau * Reff * Rho_Ice
# Iwp_Dcomp(Elem_Idx, Line_Idx) = 0.667 * Tau * Reff * Rho_Ice
# endif
keep_3 = np.logical_and(np.invert(np.isnan(geo_dz)), geo_dz > 1.0)
keep = keep_0 & keep_1 & keep_2 & keep_3
lwp_dcomp = np.zeros(reff.shape[0])
iwp_dcomp = np.zeros(reff.shape[0])
lwp_dcomp[:] = np.nan
iwp_dcomp[:] = np.nan
# compute ice/liquid water path, g m-2
reff *= 1.0e-06 # convert microns to meters
iwp_dcomp[ice] = 0.667 * opd[ice] * rho_ice * reff[ice]
lwp_dcomp[no_ice] = 0.55 * opd[no_ice] * rho_water * reff[no_ice]
lwp_dcomp = lwp_dcomp.reshape(xy_shape)
iwp_dcomp = iwp_dcomp.reshape(xy_shape)
def make_for_full_domain_predict_viirs_clavrx(h5f, name_list=None, res_fac=1, day_night='DAY', use_dnb=False):
w_x = 16
w_y = 16
i_0 = 0
j_0 = 0
s_x = int(w_x / res_fac)
s_y = int(w_y / res_fac)
ylen = h5f['scan_lines_along_track_direction'].shape[0]
xlen = h5f['pixel_elements_along_scan_direction'].shape[0]
if (day_night == 'NIGHT' or day_night == 'AUTO') and use_dnb:
name = ds_name
if use_nl_comp:
if ds_name == 'cld_reff_dcomp':
name = 'cld_reff_nlcomp'
elif ds_name == 'cld_opd_dcomp':
name = 'cld_opd_nlcomp'
gvals = get_grid_values(h5f, name, j_0, i_0, None, num_j=ylen, num_i=xlen)
if gvals is not None:
grd_dct[ds_name] = gvals
cnt_a += 1
if cnt_a > 0 and cnt_a != len(name_list):
raise GenericException('weirdness')
# TODO: need to investigate discrepencies with compute_lwc_iwc
# if use_nl_comp:
# cld_phase = get_grid_values(h5f, 'cloud_phase', j_0, i_0, None, num_j=ylen, num_i=xlen)
# cld_dz = get_grid_values(h5f, 'cld_geo_thick', j_0, i_0, None, num_j=ylen, num_i=xlen)
# reff = grd_dct['cld_reff_dcomp']
# opd = grd_dct['cld_opd_dcomp']
#
# lwc_nlcomp, iwc_nlcomp = compute_lwc_iwc(cld_phase, reff, opd, cld_dz)
# grd_dct['iwc_dcomp'] = iwc_nlcomp
# grd_dct['lwc_dcomp'] = lwc_nlcomp
n_x = int(xlen/s_x) - 1
n_y = int(ylen/s_y) - 1
r_x = xlen - (n_x * s_x)
x_d = 0 if r_x >= w_x else int((w_x - r_x)/s_x)
n_x -= x_d
r_y = ylen - (n_y * s_y)
y_d = 0 if r_y >= w_y else int((w_y - r_y)/s_y)
n_y -= y_d
ll = [j_0 + j*s_y for j in range(n_y)]
cc = [i_0 + i*s_x for i in range(n_x)]
i_ul_b = i_ul + w_x
grd_dct_n[ds_name].append(grd_dct[ds_name][j_ul:j_ul_b, i_ul:i_ul_b])
lats = get_grid_values(h5f, 'latitude', j_0, i_0, None, num_j=ylen, num_i=xlen, range_name=None)
lons = get_grid_values(h5f, 'longitude', j_0, i_0, None, num_j=ylen, num_i=xlen, range_name=None)
def make_for_full_domain_predict2(h5f, satellite='GOES16', domain='FD', res_fac=1):
geos, xlen, xmin, xmax, ylen, ymin, ymax = get_cartopy_crs(satellite, domain)
if satellite == 'H08':
xlen = taiwan_lenx
ylen = taiwan_leny
i_0 = taiwan_i0
j_0 = taiwan_j0
solzen = get_grid_values(h5f, 'solar_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen)
satzen = get_grid_values(h5f, 'sensor_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen)
solzen = solzen[0:(n_y-1)*s_y:s_y, 0:(n_x-1)*s_x:s_x]
satzen = satzen[0:(n_y-1)*s_y:s_y, 0:(n_x-1)*s_x:s_x]
# -------------------------------------------------------------------------------------------
def prepare_evaluate(h5f, name_list, satellite='GOES16', domain='FD', res_fac=1, offset=0):
w_x = 16
w_y = 16
i_0 = 0
j_0 = 0
s_x = int(w_x / res_fac)
s_y = int(w_y / res_fac)
geos, xlen, xmin, xmax, ylen, ymin, ymax = get_cartopy_crs(satellite, domain)
if satellite == 'H08':
xlen = taiwan_lenx
ylen = taiwan_leny
i_0 = taiwan_i0
j_0 = taiwan_j0
n_x = int(xlen/s_x) - 1
n_y = int(ylen/s_y) - 1
r_x = xlen - (n_x * s_x)
x_d = 0 if r_x >= w_x else int((w_x - r_x)/s_x)
n_x -= x_d
r_y = ylen - (n_y * s_y)
y_d = 0 if r_y >= w_y else int((w_y - r_y)/s_y)
n_y -= y_d
ll = [(offset+j_0) + j*s_y for j in range(n_y)]
cc = [(offset+i_0) + i*s_x for i in range(n_x)]
grd_dct_n = {name: [] for name in name_list}
cnt_a = 0
for ds_name in name_list:
gvals = get_grid_values(h5f, ds_name, j_0, i_0, None, num_j=ylen, num_i=xlen)
if gvals is not None:
grd_dct_n[ds_name] = gvals
cnt_a += 1
if cnt_a > 0 and cnt_a != len(name_list):
raise GenericException('weirdness')
solzen = get_grid_values(h5f, 'solar_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen)
satzen = get_grid_values(h5f, 'sensor_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen)
solzen = solzen[0:(n_y-1)*s_y:s_y, 0:(n_x-1)*s_x:s_x]
satzen = satzen[0:(n_y-1)*s_y:s_y, 0:(n_x-1)*s_x:s_x]
grd_dct = {name: None for name in name_list}
for ds_name in name_list:
grd_dct[ds_name] = np.stack(grd_dct_n[ds_name])
return grd_dct, solzen, satzen, ll, cc
flt_level_ranges_str = {k: None for k in range(5)}
flt_level_ranges_str[0] = '0_2000'
flt_level_ranges_str[1] = '2000_4000'
flt_level_ranges_str[2] = '4000_6000'
flt_level_ranges_str[3] = '6000_8000'
flt_level_ranges_str[4] = '8000_15000'
# flt_level_ranges_str = {k: None for k in range(1)}
# flt_level_ranges_str[0] = 'column'
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
def get_cf_nav_parameters(satellite='GOES16', domain='FD'):
param_dct = None
if satellite == 'H08': # We presently only have FD
param_dct = {'semi_major_axis': 6378.137,
'semi_minor_axis': 6356.7523,
'perspective_point_height': 35785.863,
'latitude_of_projection_origin': 0.0,
'longitude_of_projection_origin': 140.7,
'inverse_flattening': 298.257,
'sweep_angle_axis': 'y',
'x_scale_factor': 5.58879902955962e-05,
'x_add_offset': -0.153719917308037,
'y_scale_factor': -5.58879902955962e-05,
'y_add_offset': 0.153719917308037}
elif satellite == 'GOES16':
if domain == 'CONUS':
param_dct = {'semi_major_axis': 6378137.0,
'semi_minor_axis': 6356752.31414,
'perspective_point_height': 35786023.0,
'latitude_of_projection_origin': 0.0,
'longitude_of_projection_origin': -75,
'inverse_flattening': 298.257,
'sweep_angle_axis': 'x',
'x_scale_factor': 5.6E-05,
'x_add_offset': -0.101332,
'y_scale_factor': -5.6E-05,
'y_add_offset': 0.128212}
return param_dct
def write_icing_file(clvrx_str_time, output_dir, preds_dct, probs_dct, x, y, lons, lats, elems, lines):
outfile_name = output_dir + 'icing_prediction_'+clvrx_str_time+'.h5'
dim_0_name = 'x'
dim_1_name = 'y'
flt_lvls = list(preds_dct.keys())
for flvl in flt_lvls:
preds = preds_dct[flvl]
icing_pred_ds = h5f_out.create_dataset('icing_prediction_level_'+flt_level_ranges_str[flvl], data=preds, dtype='i2')
icing_pred_ds.attrs.create('coordinates', data='y x')
icing_pred_ds.attrs.create('grid_mapping', data='Projection')
icing_pred_ds.attrs.create('missing', data=-1)
icing_pred_ds.dims[0].label = dim_0_name
icing_pred_ds.dims[1].label = dim_1_name
icing_prob_ds = h5f_out.create_dataset('icing_probability_level_'+flt_level_ranges_str[flvl], data=probs, dtype='f4')
icing_prob_ds.attrs.create('coordinates', data='y x')
icing_prob_ds.attrs.create('grid_mapping', data='Projection')
icing_prob_ds.attrs.create('missing', data=-1.0)
icing_prob_ds.dims[0].label = dim_0_name
icing_prob_ds.dims[1].label = dim_1_name
prob_s = np.stack(prob_s, axis=-1)
max_prob = np.max(prob_s, axis=2)
icing_prob_ds = h5f_out.create_dataset('max_icing_probability_column', data=max_prob, dtype='f4')
icing_prob_ds.attrs.create('coordinates', data='y x')
icing_prob_ds.attrs.create('grid_mapping', data='Projection')
icing_prob_ds.attrs.create('missing', data=-1.0)
icing_prob_ds.dims[0].label = dim_0_name
icing_prob_ds.dims[1].label = dim_1_name
icing_pred_ds = h5f_out.create_dataset('max_icing_probability_level', data=max_lvl, dtype='i2')