Newer
Older
from metpy.units import units
from metpy.calc import thickness_hydrostatic
LatLonTuple = namedtuple('LatLonTuple', ['lat', 'lon'])
class EarlyStop:
def __init__(self, window_length=3, patience=5):
self.patience = patience
self.cnt = 0
self.cnt_wait = 0
self.window = np.zeros(window_length, dtype=np.single)
self.window.fill(np.nan)
def check_stop(self, value):
self.window[:-1] = self.window[1:]
self.window[-1] = value
if np.any(np.isnan(self.window)):
return False
ave = np.mean(self.window)
if ave < self.min:
self.min = ave
self.cnt_wait = 0
return False
else:
self.cnt_wait += 1
if self.cnt_wait > self.patience:
return True
else:
return False
def get_time_tuple_utc(timestamp):
dt_obj = datetime.datetime.fromtimestamp(timestamp, timezone.utc)
return dt_obj, dt_obj.timetuple()
def get_timestamp(dt_str, format_code='%Y-%m-%d_%H:%M'):
dto = datetime.datetime.strptime(dt_str, format_code).replace(tzinfo=timezone.utc)
ts = dto.timestamp()
return ts
def add_time_range_to_filename(pathname, tstart, tend):
dt_obj, _ = get_time_tuple_utc(tstart)
str_start = dt_obj.strftime('%Y%m%d%H')
dt_obj, _ = get_time_tuple_utc(tend)
str_end = dt_obj.strftime('%Y%m%d%H')
filename = os.path.split(pathname)[1]
w_o_ext, ext = os.path.splitext(filename)
filename = w_o_ext+'_'+str_start+'_'+str_end+ext
path = os.path.split(pathname)[0]
path = path+'/'+filename
return path
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def haversine_np(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
(lon1, lat1) must be broadcastable with (lon2, lat2).
"""
lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2
c = 2 * np.arcsin(np.sqrt(a))
km = 6367 * c
return km
def bin_data_by(a, b, bin_ranges):
nbins = len(bin_ranges)
binned_data = []
for i in range(nbins):
rng = bin_ranges[i]
idxs = (b >= rng[0]) & (b < rng[1])
binned_data.append(a[idxs])
return binned_data
def bin_data_by_edges(a, b, edges):
nbins = len(edges) - 1
binned_data = []
for i in range(nbins):
idxs = (b >= edges[i]) & (b < edges[i+1])
binned_data.append(a[idxs])
return binned_data
def get_bin_ranges(lop, hip, bin_size=100):
bin_ranges = []
delp = hip - lop
nbins = int(delp/bin_size)
for i in range(nbins):
rng = [lop + i*bin_size, lop + i*bin_size + bin_size]
bin_ranges.append(rng)
return bin_ranges
# t must be monotonic increasing
def get_breaks(t, threshold):
t_0 = t[0:t.shape[0]-1]
t_1 = t[1:t.shape[0]]
d = t_1 - t_0
idxs = np.nonzero(d > threshold)
return idxs
# return indexes of ts where value is within ts[i] - threshold < value < ts[i] + threshold
def pressure_to_altitude(pres, temp, prof_pres, prof_temp, sfc_pres=None, sfc_temp=None, sfc_elev=0):
raise GenericException("target pressure profile must be monotonic increasing")
raise GenericException("target pressure less than top of pressure profile")
if temp is None:
temp = np.interp(pres, prof_pres, prof_temp)
i_top = np.argmax(np.extract(prof_pres <= pres, prof_pres)) + 1
pres_s = prof_pres.tolist()
temp_s = prof_temp.tolist()
pres_s = [pres] + pres_s[i_top:]
temp_s = [temp] + temp_s[i_top:]
return -1
prof_pres = np.array(pres_s)
prof_temp = np.array(temp_s)
i_bot = prof_pres.shape[0] - 1
pres_s = pres_s + [sfc_pres]
temp_s = temp_s + [sfc_temp]
else:
idx = np.argmax(np.extract(prof_pres < sfc_pres, prof_pres))
if sfc_temp is None:
sfc_temp = np.interp(sfc_pres, prof_pres, prof_temp)
pres_s = prof_pres.tolist()
temp_s = prof_temp.tolist()
pres_s = pres_s[0:idx+1] + [sfc_pres]
temp_s = temp_s[0:idx+1] + [sfc_temp]
prof_pres = np.array(pres_s)
prof_temp = np.array(temp_s)
prof_pres = prof_pres[::-1]
prof_temp = prof_temp[::-1]
prof_pres = prof_pres * units.hectopascal
prof_temp = prof_temp * units.kelvin
sfc_elev = sfc_elev * units.meter
z = thickness_hydrostatic(prof_pres, prof_temp) + sfc_elev
return z
# http://fourier.eng.hmc.edu/e176/lectures/NM/node25.html
def minimize_quadratic(xa, xb, xc, ya, yb, yc):
x_m = xb + 0.5*(((ya-yb)*(xc-xb)*(xc-xb) - (yc-yb)*(xb-xa)*(xb-xa)) / ((ya-yb)*(xc-xb) + (yc-yb)*(xb-xa)))
def value_to_index(nda, value):
diff = np.abs(nda - value)
idx = np.argmin(diff)
for k, v in enumerate(value_s):
above = v >= nda
if not above.any():
continue
# array solzen must be degrees, missing values must NaN. For small roughly 50x50km regions only
def is_day(solzen, test_angle=80.0):
solzen = solzen.flatten()
solzen = solzen[np.invert(np.isnan(solzen))]
if len(solzen) == 0 or np.sum(solzen <= test_angle) < len(solzen):
# array solzen must be degrees, missing values must NaN. For small roughly 50x50km regions only
solzen = solzen.flatten()
solzen = solzen[np.invert(np.isnan(solzen))]
if len(solzen) == 0 or np.sum(solzen >= test_angle) < len(solzen):
def check_oblique(satzen, test_angle=70.0):
satzen = satzen.flatten()
satzen = satzen[np.invert(np.isnan(satzen))]
if len(satzen) == 0 or np.sum(satzen <= test_angle) < len(satzen):
return False
else:
return True
def get_grid_values_all(h5f, grid_name, scale_factor_name='scale_factor', add_offset_name='add_offset',
fill_value_name='_FillValue', range_name='actual_range', fill_value=None):
hfds = h5f[grid_name]
attrs = hfds.attrs
if attrs is None:
raise GenericException('No attributes object for: '+grid_name)
grd_vals = hfds[:,]
if fill_value is not None:
grd_vals = np.where(grd_vals == fill_value, np.nan, grd_vals)
attr = attrs.get(scale_factor_name)
if attr is None:
raise GenericException('Attribute: '+scale_factor_name+' not found for variable: '+grid_name)
scale_factor = attr[0]
grd_vals = grd_vals * scale_factor
if add_offset_name is not None:
attr = attrs.get(add_offset_name)
if attr is None:
raise GenericException('Attribute: '+add_offset_name+' not found for variable: '+grid_name)
add_offset = attr[0]
if range_name is not None:
attr = attrs.get(range_name)
if attr is None:
raise GenericException('Attribute: '+range_name+' not found for variable: '+grid_name)
low = attr[0]
high = attr[1]
grd_vals = np.where(grd_vals < low, np.nan, grd_vals)
grd_vals = np.where(grd_vals > high, np.nan, grd_vals)
elif fill_value_name is not None:
attr = attrs.get(fill_value_name)
if attr is None:
raise GenericException('Attribute: '+fill_value_name+' not found for variable: '+grid_name)
fill_value = attr[0]
grd_vals = np.where(grd_vals == fill_value, np.nan, grd_vals)
# dt_str_0: start datetime string in format YYYY-MM-DD_HH:MM
# dt_str_1: stop datetime string, if not None num_steps is computed
# return num_steps+1 lists of datetime strings and timestamps (edges of a numpy histogram)
def make_times(dt_str_0, dt_str_1=None, format_code='%Y-%m-%d_%H:%M', num_steps=None, days=None, hours=None, minutes=None, seconds=None):
if days is not None:
inc = 86400*days
elif hours is not None:
inc = 3600*hours
elif minutes is not None:
inc = 60*minutes
else:
inc = seconds
dt_obj_s = []
ts_s = []
dto_0 = datetime.datetime.strptime(dt_str_0, format_code).replace(tzinfo=timezone.utc)
dto_1 = datetime.datetime.strptime(dt_str_1, format_code).replace(tzinfo=timezone.utc)
dt_obj_s.append(dto_0)
ts_s.append(ts_0)
dto_last = dto_0
for k in range(num_steps):
dt_obj = dto_last + datetime.timedelta(seconds=inc)
dt_obj_s.append(dt_obj)
ts_s.append(dt_obj.timestamp())
dto_last = dt_obj
return dt_obj_s, ts_s
def make_histogram(values, edges):
h = np.histogram(values, bins=edges)
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
return h
def normalize(data, param, mean_std_dict, add_noise=False, noise_scale=1.0, seed=None):
if mean_std_dict.get(param) is None:
return data
shape = data.shape
data = data.flatten()
mean, std, lo, hi = mean_std_dict.get(param)
data -= mean
data /= std
if add_noise:
if seed is not None:
np.random.seed(seed)
rnd = np.random.normal(loc=0, scale=noise_scale, size=data.size)
data += rnd
not_valid = np.isnan(data)
data[not_valid] = 0
data = np.reshape(data, shape)
f = open(ancillary_path+'geos_crs_goes16_FD.pkl', 'rb')
geos_goes16_fd = pickle.load(f)
f.close()
f = open(ancillary_path+'geos_crs_goes16_CONUS.pkl', 'rb')
geos_goes16_conus = pickle.load(f)
f.close()
f = open(ancillary_path+'geos_crs_H08_FD.pkl', 'rb')
geos_h08_fd = pickle.load(f)
f.close()
def get_cartopy_crs(satellite, domain):
if satellite == 'GOES16':
if domain == 'FD':
geos = geos_goes16_fd
xlen = 5424
xmin = -5433893.0
ylen = 5424
ymin = -5433893.0
ymax = 5433893.0
elif domain == 'CONUS':
geos = geos_goes16_conus
xlen = 2500
xmin = -3626269.5
xmax = 1381770.0
ylen = 1500
ymin = 1584175.9
ymax = 4588198.0
elif satellite == 'H08':
geos = geos_h08_fd
xlen = 5500
xmin = -5498.99990119
xmax = 5498.99990119
ylen = 5500
ymin = -5498.99990119
ymax = 5498.99990119
return geos, xlen, xmin, xmax, ylen, ymin, ymax
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
def get_grid_values(h5f, grid_name, j_c, i_c, half_width, num_j=None, num_i=None, scale_factor_name='scale_factor', add_offset_name='add_offset',
fill_value_name='_FillValue', range_name='actual_range', fill_value=None):
hfds = h5f[grid_name]
attrs = hfds.attrs
if attrs is None:
raise GenericException('No attributes object for: '+grid_name)
ylen, xlen = hfds.shape
if half_width is not None:
j_l = j_c-half_width
i_l = i_c-half_width
if j_l < 0 or i_l < 0:
return None
j_r = j_c+half_width+1
i_r = i_c+half_width+1
if j_r >= ylen or i_r >= xlen:
return None
else:
j_l = j_c
j_r = j_c + num_j + 1
i_l = i_c
i_r = i_c + num_i + 1
grd_vals = hfds[j_l:j_r, i_l:i_r]
if fill_value is not None:
grd_vals = np.where(grd_vals == fill_value, np.nan, grd_vals)
if scale_factor_name is not None:
attr = attrs.get(scale_factor_name)
if attr is None:
raise GenericException('Attribute: '+scale_factor_name+' not found for dataset: '+grid_name)
if np.isscalar(attr):
scale_factor = attr
else:
scale_factor = attr[0]
grd_vals = grd_vals * scale_factor
if add_offset_name is not None:
attr = attrs.get(add_offset_name)
if attr is None:
raise GenericException('Attribute: '+add_offset_name+' not found for dataset: '+grid_name)
if np.isscalar(attr):
add_offset = attr
else:
add_offset = attr[0]
grd_vals = grd_vals + add_offset
if range_name is not None:
attr = attrs.get(range_name)
if attr is None:
raise GenericException('Attribute: '+range_name+' not found for dataset: '+grid_name)
low = attr[0]
high = attr[1]
grd_vals = np.where(grd_vals < low, np.nan, grd_vals)
grd_vals = np.where(grd_vals > high, np.nan, grd_vals)
elif fill_value_name is not None:
attr = attrs.get(fill_value_name)
if attr is None:
raise GenericException('Attribute: '+fill_value_name+' not found for dataset: '+grid_name)
if np.isscalar(attr):
fill_value = attr
else:
fill_value = attr[0]
grd_vals = np.where(grd_vals == fill_value, np.nan, grd_vals)
return grd_vals
def concat_dict_s(t_dct_0, t_dct_1):
keys_0 = list(t_dct_0.keys())
nda_0 = np.array(keys_0)
keys_1 = list(t_dct_1.keys())
nda_1 = np.array(keys_1)
comm_keys, comm0, comm1 = np.intersect1d(nda_0, nda_1, return_indices=True)
comm_keys = comm_keys.tolist()
for key in comm_keys:
t_dct_1.pop(key)
t_dct_0.update(t_dct_1)
return t_dct_0
# Example GOES file to retrieve GEOS parameters in MetPy form (CONUS)
exmp_file_conus = '/Users/tomrink/data/OR_ABI-L1b-RadC-M6C14_G16_s20193140811215_e20193140813588_c20193140814070.nc'
# Full Disk
exmp_file_fd = '/Users/tomrink/data/OR_ABI-L1b-RadF-M6C16_G16_s20212521800223_e20212521809542_c20212521809596.nc'
# keep for reference
# if domain == 'CONUS':
# exmpl_ds = xr.open_dataset(exmp_file_conus)
# elif domain == 'FD':
# exmpl_ds = xr.open_dataset(exmp_file_fd)
# mdat = exmpl_ds.metpy.parse_cf('Rad')
# geos = mdat.metpy.cartopy_crs
# xlen = mdat.x.values.size
# ylen = mdat.y.values.size
# exmpl_ds.close()
# Taiwan domain:
# lon, lat = 120.955098, 23.834310
# elem, line = (1789, 1505)
# # UR from Taiwan
taiwan_lenx = 1420
taiwan_leny = 1020
# geos.transform_point(135.0, 35.0, ccrs.PlateCarree(), False)
# geos.transform_point(106.61, 13.97, ccrs.PlateCarree(), False)
taiwain_extent = [-3342, -502, 1470, 3510] # GEOS coordinates, not line, elem
# ------------ This code will not be needed when we implement a Fully Connected CNN -----------------------------------
def make_for_full_domain_predict(h5f, name_list=None, satellite='GOES16', domain='FD'):
geos, xlen, xmin, xmax, ylen, ymin, ymax = get_cartopy_crs(satellite, domain)
if satellite == 'H08':
xlen = taiwan_lenx
ylen = taiwan_leny
gvals = get_grid_values(h5f, ds_name, j_0, i_0, None, num_j=ylen, num_i=xlen)
if gvals is not None:
grd_dct[ds_name] = gvals
cnt_a += 1
if cnt_a > 0 and cnt_a != len(name_list):
raise GenericException('weirdness')
grd_dct_n = {name: [] for name in name_list}
ll = [j_0 + j*s_y for j in range(n_y-1)]
cc = [i_0 + i*s_x for i in range(n_x-1)]
grd_dct_n[ds_name].append(grd_dct[ds_name][j_ul:j_ul+w_y, i_ul:i_ul+w_x])
grd_dct = {name: None for name in name_list}
grd_dct[ds_name] = np.stack(grd_dct_n[ds_name])
return grd_dct, ll, cc
def make_for_full_domain_predict2(h5f, satellite='GOES16', domain='FD'):
w_x = 16
w_y = 16
i_0 = 0
j_0 = 0
s_x = w_x
s_y = w_y
geos, xlen, xmin, xmax, ylen, ymin, ymax = get_cartopy_crs(satellite, domain)
if satellite == 'H08':
xlen = taiwan_lenx
ylen = taiwan_leny
i_0 = taiwan_i0
j_0 = taiwan_j0
solzen = get_grid_values(h5f, 'solar_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen)
satzen = get_grid_values(h5f, 'sensor_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen)
solzen = solzen[0:(n_y-1)*s_y:s_y, 0:(n_x-1)*s_x:s_x]
satzen = satzen[0:(n_y-1)*s_y:s_y, 0:(n_x-1)*s_x:s_x]
# -------------------------------------------------------------------------------------------
flt_level_ranges_str = {k: None for k in range(5)}
flt_level_ranges_str[0] = '0_2000'
flt_level_ranges_str[1] = '2000_4000'
flt_level_ranges_str[2] = '4000_6000'
flt_level_ranges_str[3] = '6000_8000'
flt_level_ranges_str[4] = '8000_15000'
# flt_level_ranges_str = {k: None for k in range(1)}
# flt_level_ranges_str[0] = 'column'
def write_icing_file(clvrx_str_time, output_dir, preds_dct, probs_dct, x, y, lons, lats, elems, lines):
outfile_name = output_dir + 'icing_prediction_'+clvrx_str_time+'.h5'
dim_0_name = 'x'
dim_1_name = 'y'
flt_lvls = list(preds_dct.keys())
for flvl in flt_lvls:
preds = preds_dct[flvl]
icing_pred_ds = h5f_out.create_dataset('icing_prediction_level_'+flt_level_ranges_str[flvl], data=preds, dtype='i2')
icing_pred_ds.attrs.create('coordinates', data='y x')
icing_pred_ds.attrs.create('grid_mapping', data='Projection')
icing_pred_ds.attrs.create('missing', data=-1)
icing_pred_ds.dims[0].label = dim_0_name
icing_pred_ds.dims[1].label = dim_1_name
icing_prob_ds = h5f_out.create_dataset('icing_probability_level_'+flt_level_ranges_str[flvl], data=probs, dtype='f4')
icing_prob_ds.attrs.create('coordinates', data='y x')
icing_prob_ds.attrs.create('grid_mapping', data='Projection')
icing_prob_ds.attrs.create('missing', data=-1.0)
icing_prob_ds.dims[0].label = dim_0_name
icing_prob_ds.dims[1].label = dim_1_name
prob_s = np.stack(prob_s, axis=-1)
max_prob = np.max(prob_s, axis=2)
icing_prob_ds = h5f_out.create_dataset('max_icing_probability_column', data=max_prob, dtype='f4')
icing_prob_ds.attrs.create('coordinates', data='y x')
icing_prob_ds.attrs.create('grid_mapping', data='Projection')
icing_prob_ds.attrs.create('missing', data=-1.0)
icing_prob_ds.dims[0].label = dim_0_name
icing_prob_ds.dims[1].label = dim_1_name
icing_pred_ds = h5f_out.create_dataset('max_icing_probability_level', data=max_lvl, dtype='i2')
icing_pred_ds.attrs.create('coordinates', data='y x')
icing_pred_ds.attrs.create('grid_mapping', data='Projection')
icing_pred_ds.attrs.create('missing', data=-1)
icing_pred_ds.dims[0].label = dim_0_name
icing_pred_ds.dims[1].label = dim_1_name
lon_ds = h5f_out.create_dataset('longitude', data=lons, dtype='f4')
lon_ds.attrs.create('units', data='degrees_east')
lon_ds.attrs.create('long_name', data='icing prediction longitude')
lat_ds = h5f_out.create_dataset('latitude', data=lats, dtype='f4')
lat_ds.attrs.create('units', data='degrees_north')
lat_ds.attrs.create('long_name', data='icing prediction latitude')
proj_ds.attrs.create('long_name', data='Himawari Imagery Projection')
proj_ds.attrs.create('grid_mapping_name', data='geostationary')
proj_ds.attrs.create('sweep_angle_axis', data='y')
proj_ds.attrs.create('semi_major_axis', data=6378.137)
proj_ds.attrs.create('semi_minor_axis', data=6356.7523)
proj_ds.attrs.create('inverse_flattening', data=298.257)
proj_ds.attrs.create('perspective_point_height', data=35785.863)
proj_ds.attrs.create('latitude_of_projection_origin', data=0.0)
proj_ds.attrs.create('longitude_of_projection_origin', data=140.7)
proj_ds.attrs.create('CFAC', data=20466275)
proj_ds.attrs.create('LFAC', data=20466275)
proj_ds.attrs.create('COFF', data=2750.5)
proj_ds.attrs.create('LOFF', data=2750.5)
if x is not None:
x_ds = h5f_out.create_dataset('x', data=x, dtype='f8')
x_ds.dims[0].label = dim_0_name
x_ds.attrs.create('standard_name', data='projection_x_coordinate')
x_ds.attrs.create('long_name', data='GOES PUG W-E fixed grid viewing angle')
x_ds.attrs.create('scale_factor', data=5.58879902955962e-05)
x_ds.attrs.create('add_offset', data=-0.153719917308037)
x_ds.attrs.create('CFAC', data=20466275)
x_ds.attrs.create('COFF', data=2750.5)
y_ds.dims[0].label = dim_1_name
y_ds.attrs.create('standard_name', data='projection_y_coordinate')
y_ds.attrs.create('long_name', data='GOES PUG S-N fixed grid viewing angle')
y_ds.attrs.create('scale_factor', data=-5.58879902955962e-05)
y_ds.attrs.create('add_offset', data=0.153719917308037)
y_ds.attrs.create('LFAC', data=20466275)
y_ds.attrs.create('LOFF', data=2750.5)
if elems is not None:
elem_ds = h5f_out.create_dataset('elems', data=elems, dtype='i2')
elem_ds.dims[0].label = dim_0_name
line_ds.dims[0].label = dim_1_name
def write_icing_file_nc4(clvrx_str_time, output_dir, preds_dct, probs_dct,
x, y, lons, lats, elems, lines, satellite='GOES16', domain='CONUS'):
outfile_name = output_dir + 'icing_prediction_'+clvrx_str_time+'.nc'
rootgrp = Dataset(outfile_name, 'w', format='NETCDF4')
dim_0 = rootgrp.createDimension(dim_0_name, size=x.shape[0])
dim_1 = rootgrp.createDimension(dim_1_name, size=y.shape[0])
dim_time = rootgrp.createDimension(time_dim_name, size=1)
tvar = rootgrp.createVariable('time', 'f8', time_dim_name)
tvar[0] = get_timestamp(clvrx_str_time)
tvar.units = 'seconds since 1970-01-01 00:00:00'
prob_s = []
flt_lvls = list(preds_dct.keys())
for flvl in flt_lvls:
preds = preds_dct[flvl]
icing_pred_ds = rootgrp.createVariable('icing_prediction_level_'+flt_level_ranges_str[flvl], 'i2', [dim_1_name, dim_0_name])
icing_pred_ds.setncattr('grid_mapping', 'Projection')
icing_pred_ds.setncattr('missing', -1)
icing_pred_ds[:,] = preds
for flvl in flt_lvls:
probs = probs_dct[flvl]
icing_prob_ds = rootgrp.createVariable('icing_probability_level_'+flt_level_ranges_str[flvl], 'f4', [dim_1_name, dim_0_name])
icing_prob_ds.setncattr('grid_mapping', 'Projection')
icing_prob_ds.setncattr('missing', -1.0)
icing_prob_ds[:,] = probs
prob_s = np.stack(prob_s, axis=-1)
max_prob = np.max(prob_s, axis=2)
icing_prob_ds = rootgrp.createVariable('max_icing_probability_column', 'f4', [dim_1_name, dim_0_name])
icing_prob_ds.setncattr('grid_mapping', 'Projection')
icing_prob_ds.setncattr('missing', -1.0)
icing_prob_ds[:,] = max_prob
max_lvl = np.argmax(prob_s, axis=2)
icing_pred_ds = rootgrp.createVariable('max_icing_probability_level', 'i2', [dim_1_name, dim_0_name])
icing_pred_ds.setncattr('grid_mapping', 'Projection')
icing_pred_ds.setncattr('missing', -1)
icing_pred_ds[:,] = max_lvl
lon_ds = rootgrp.createVariable('longitude', 'f4', [dim_1_name, dim_0_name])
lon_ds.units = 'degrees_east'
lon_ds[:,] = lons
lat_ds = rootgrp.createVariable('latitude', 'f4', [dim_1_name, dim_0_name])
lat_ds.units = 'degrees_north'
lat_ds[:,] = lats
cf_nav_dct = get_cf_nav_parameters(satellite, domain)
if satellite == 'H08':
long_name = 'Himawari Imagery Projection'
elif satellite == 'GOES16':
long_name = 'GOES-16/17 Imagery Projection'
proj_ds = rootgrp.createVariable('Projection', 'b')
proj_ds.setncattr('grid_mapping_name', 'geostationary')
proj_ds.setncattr('sweep_angle_axis', cf_nav_dct['sweep_angle_axis'])
proj_ds.setncattr('semi_major_axis', cf_nav_dct['semi_major_axis'])
proj_ds.setncattr('semi_minor_axis', cf_nav_dct['semi_minor_axis'])
proj_ds.setncattr('inverse_flattening', cf_nav_dct['inverse_flattening'])
proj_ds.setncattr('perspective_point_height', cf_nav_dct['perspective_point_height'])
proj_ds.setncattr('latitude_of_projection_origin', cf_nav_dct['latitude_of_projection_origin'])
proj_ds.setncattr('longitude_of_projection_origin', cf_nav_dct['longitude_of_projection_origin'])
if x is not None:
x_ds = rootgrp.createVariable(dim_0_name, 'f8', [dim_0_name])
x_ds.units = 'rad'
x_ds.setncattr('standard_name', 'projection_x_coordinate')
x_ds.setncattr('long_name', 'fixed grid viewing angle')
x_ds.setncattr('scale_factor', cf_nav_dct['x_scale_factor'])
x_ds.setncattr('add_offset', cf_nav_dct['x_add_offset'])
x_ds[:] = x
y_ds = rootgrp.createVariable(dim_1_name, 'f8', [dim_1_name])
y_ds.units = 'rad'
y_ds.setncattr('standard_name', 'projection_y_coordinate')
y_ds.setncattr('long_name', 'fixed grid viewing angle')
y_ds.setncattr('scale_factor', cf_nav_dct['y_scale_factor'])
y_ds.setncattr('add_offset', cf_nav_dct['y_add_offset'])
y_ds[:] = y
if elems is not None:
elem_ds = rootgrp.createVariable('elems', 'i2', [dim_0_name])
elem_ds[:] = elems
line_ds = rootgrp.createVariable('lines', 'i2', [dim_1_name])
line_ds[:] = lines
pass