Newer
Older
def acspo_validate(oper_file, cspp_file, rel_tol=0.001, outfile_nc=None):
h5f_oper = h5py.File(oper_file, 'r')
h5f_cspp = h5py.File(cspp_file, 'r')
lon_cspp = get_grid_values_all(h5f_cspp, 'lon')
lat_cspp = get_grid_values_all(h5f_cspp, 'lat')
if np.any(np.isnan(lat_cspp)) or np.any(np.isnan(lon_cspp)):
print('Invalid lat')
if np.min(lat_cspp) < -90 or np.max(lat_cspp) > 90:
print('Invalid lat')
if np.min(lon_cspp) < -180 or np.max(lon_cspp) > 180:
print('Invalid lon')
# ----* Investigate: CSPP and OPER time values don't seem to ever match *-------------------
# dtime_cspp = get_grid_values_all(h5f_cspp, 'sst_dtime')[0, ]
# ref_time_cspp = get_grid_values_all(h5f_cspp, 'time')[0]
cntr_lon_cspp = lon_cspp[:, c_idx]
cntr_lat_cspp = lat_cspp[:, c_idx]
sst_cspp = get_grid_values_all(h5f_cspp, 'sea_surface_temperature')[0, ]
l2p_flags_cspp = get_grid_values_all(h5f_cspp, 'l2p_flags')[0, ]
lon_oper = get_grid_values_all(h5f_oper, 'lon')
lat_oper = get_grid_values_all(h5f_oper, 'lat')
if np.any(np.isnan(lat_cspp)) or np.any(np.isnan(lon_cspp)):
print('Invalid lat')
if np.min(lat_cspp) < -90 or np.max(lat_cspp) > 90:
print('Invalid lat')
if np.min(lon_cspp) < -180 or np.max(lon_cspp) > 180:
print('Invalid lon')
# --* See note above on issue with time *-------------------------------------
# dtime_oper = get_grid_values_all(h5f_oper, 'sst_dtime')[0, ]
# ref_time_oper = get_grid_values_all(h5f_oper, 'time')[0]
cntr_lon_oper = lon_oper[:, c_idx]
cntr_lat_oper = lat_oper[:, c_idx]
sst_oper = get_grid_values_all(h5f_oper, 'sea_surface_temperature')[0, ]
l2p_flags_oper = get_grid_values_all(h5f_oper, 'l2p_flags')[0, ]
# cntr_time_cspp = cntr_dtime_cspp + ref_time_cspp
# cntr_time_oper = cntr_dtime_oper + ref_time_oper
cspp_clear = (l2p_flags_cspp & (1 << 15)) == 0
oper_clear = (l2p_flags_oper & (1 << 15)) == 0
# Find the overlap Track indexes relative to each ------------------------
start_idx_oper, stop_idx_oper = -1, -1
start_idx_cspp, stop_idx_cspp = -1, -1
c_a = np.isclose(cntr_lat_oper[k], cntr_lat_cspp)
if np.sum(c_a) == 1:
if start_idx_oper == -1:
start_idx_oper = k
start_idx_cspp = np.nonzero(c_a)[0][0]
break
for k in range(len(cntr_lat_oper)-1, 0, -1):
c_a = np.isclose(cntr_lat_oper[k], cntr_lat_cspp)
if np.sum(c_a) == 1:
if stop_idx_oper == -1:
print('oper start, stop ', start_idx_oper, stop_idx_oper)
print('cspp start, stop ', start_idx_cspp, stop_idx_cspp)
# --------------------------------------------------------------------------
lon_cspp = lon_cspp[start_idx_cspp:stop_idx_cspp, :]
lat_cspp = lat_cspp[start_idx_cspp:stop_idx_cspp, :]
lon_oper = lon_oper[start_idx_oper:stop_idx_oper, :]
lat_oper = lat_oper[start_idx_oper:stop_idx_oper, :]
sst_cspp_2d = sst_cspp[start_idx_cspp:stop_idx_cspp, :]
sst_oper_2d = sst_oper[start_idx_oper:stop_idx_oper, :]
overlap_shape = lon_cspp.shape
print('overlap shape, size: ', overlap_shape, np.size(lon_cspp))
# sst_cspp_2d = np.where(cspp_clear, sst_cspp_2d, np.nan)
# sst_oper_2d = np.where(oper_clear, sst_oper_2d, np.nan)
sst_cspp = sst_cspp_2d.flatten()
sst_oper = sst_oper_2d.flatten()
oper_clear = oper_clear.flatten()
cspp_clear = cspp_clear.flatten()
lon_cspp = lon_cspp.flatten()
lat_cspp = lat_cspp.flatten()
lon_oper = lon_oper.flatten()
lat_oper = lat_oper.flatten()
both_valid = np.invert(np.isnan(sst_cspp)) & np.invert(np.isnan(sst_oper))
valid_sst_cspp = sst_cspp[keep]
valid_sst_oper = sst_oper[keep]
valid_lon_cspp = lon_cspp[keep]
valid_lat_cspp = lat_cspp[keep]
valid_lon_oper = lon_oper[keep]
valid_lat_oper = lat_oper[keep]
'sst_cspp': xr.DataArray(valid_sst_cspp, coords=None, dims=None, name='sst_cspp'),
'sst_oper': xr.DataArray(valid_sst_oper, coords=None, dims=None, name='sst_oper'),
'cspp_lat': xr.DataArray(valid_lat_cspp, coords=None, dims=None, name='cspp_lat'),
'cspp_lon': xr.DataArray(valid_lon_cspp, coords=None, dims=None, name='cspp_lon'),
'oper_lat': xr.DataArray(valid_lat_oper, coords=None, dims=None, name='oper_lat'),
'oper_lon': xr.DataArray(valid_lon_oper, coords=None, dims=None, name='oper_lon'),
np.sum(np.isclose(valid_sst_cspp, valid_sst_oper, rtol=rel_tol))/np.sum(keep))
def analyze_plot():
import h5py
h5f_a = h5py.File('/Users/tomrink/20241107055000.nc', 'r')
h5f_b = h5py.File('/Users/tomrink/20241107072000.nc', 'r')
h5f_c = h5py.File('/Users/tomrink/20241107073000.nc', 'r')
h5f_d = h5py.File('/Users/tomrink/20241107170000.nc', 'r')
h5f_e = h5py.File('/Users/tomrink/20241107171000.nc', 'r')
h5f_f = h5py.File('/Users/tomrink/20241107202000.nc', 'r')
h5f_g = h5py.File('/Users/tomrink/20241107203000.nc', 'r')
import numpy as np
sst_cspp_all = np.concatenate([h5f_a['sst_cspp'][0, :], h5f_b['sst_cspp'][0, :], h5f_c['sst_cspp'][0, :], h5f_d['sst_cspp'][0, :], h5f_e['sst_cspp'][0, :], h5f_f['sst_cspp'][0, :], h5f_g['sst_cspp'][0, :]])
sst_oper_all = np.concatenate([h5f_a['sst_oper'][0, :], h5f_b['sst_oper'][0, :], h5f_c['sst_oper'][0, :], h5f_d['sst_oper'][0, :], h5f_e['sst_oper'][0, :], h5f_f['sst_oper'][0, :], h5f_g['sst_oper'][0, :]])
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
diff = sst_cspp_all - sst_oper_all
import matplotlib.pyplot as plt
plt.hist(diff, bins=40)
plt.yscale('log')
plt.title('ACSPO SST (CSPP - OPER)')
import h5py
h5f_a = h5py.File('/Users/tomrink/20241107055000.nc', 'r')
h5f_b = h5py.File('/Users/tomrink/20241107072000.nc', 'r')
h5f_c = h5py.File('/Users/tomrink/20241107073000.nc', 'r')
h5f_d = h5py.File('/Users/tomrink/20241107170000.nc', 'r')
h5f_e = h5py.File('/Users/tomrink/20241107171000.nc', 'r')
h5f_f = h5py.File('/Users/tomrink/20241107202000.nc', 'r')
h5f_g = h5py.File('/Users/tomrink/20241107203000.nc', 'r')
import numpy as np
sst_cspp_all = np.concatenate([h5f_a['sst_cspp'][0, :], h5f_b['sst_cspp'][0, :], h5f_c['sst_cspp'][0, :], h5f_d['sst_cspp'][0, :], h5f_e['sst_cspp'][0, :], h5f_f['sst_cspp'][0, :], h5f_g['sst_cspp'][0, :]])
sst_oper_all = np.concatenate([h5f_a['sst_oper'][0, :], h5f_b['sst_oper'][0, :], h5f_c['sst_oper'][0, :], h5f_d['sst_oper'][0, :], h5f_e['sst_oper'][0, :], h5f_f['sst_oper'][0, :], h5f_g['sst_oper'][0, :]])
diff = sst_cspp_all - sst_oper_all
import matplotlib.pyplot as plt
plt.hist(diff, bins=40)
plt.yscale('log')
plt.xlabel('SST (\u00b0K)')
plt.title('ACSPO SST (CSPP - OPER), Clear Sky, 2024-11_07')
import numpy as np
c_a = np.isclose(sst_cspp_all, sst_oper_all, rtol=0.001)
c_a.shape
sst_cspp_all.shape
c_a_i = np.invert(c_a)
plt.scatter(sst_cspp_all[c_a_i], diff[c_a_i])
plt.close()
plt.scatter(sst_cspp_all[c_a_i], diff[c_a_i], s=1)
plt.title('ACSPO SST (CSPP-OPER) > rel_tol=0.001 vs SST')
plt.xlabel('SST (\u00b0K)')
plt.ylabel('SST (\u00b0K)')
plt.show()
import h5py
h5f_a = h5py.File('/Users/tomrink/20241107055000.nc', 'r')
h5f_b = h5py.File('/Users/tomrink/20241107072000.nc', 'r')
h5f_c = h5py.File('/Users/tomrink/20241107073000.nc', 'r')
h5f_d = h5py.File('/Users/tomrink/20241107170000.nc', 'r')
h5f_e = h5py.File('/Users/tomrink/20241107171000.nc', 'r')
h5f_f = h5py.File('/Users/tomrink/20241107202000.nc', 'r')
h5f_g = h5py.File('/Users/tomrink/20241107203000.nc', 'r')
import numpy as np
sst_cspp_all = np.concatenate(
[h5f_a['sst_cspp'][0, :], h5f_b['sst_cspp'][0, :], h5f_c['sst_cspp'][0, :], h5f_d['sst_cspp'][0, :],
h5f_e['sst_cspp'][0, :], h5f_f['sst_cspp'][0, :], h5f_g['sst_cspp'][0, :]])
sst_cspp_all.shape
sst_oper_all = np.concatenate(
[h5f_a['sst_oper'][0, :], h5f_b['sst_oper'][0, :], h5f_c['sst_oper'][0, :], h5f_d['sst_oper'][0, :],
h5f_e['sst_oper'][0, :], h5f_f['sst_oper'][0, :], h5f_g['sst_oper'][0, :]])
sst_oper_all.shape
diff = sst_cspp_all - sst_oper_all
import matplotlib.pyplot as plt
plt.hist(diff, bins=40)
plt.yscale('log')
plt.title('ACSPO SST (CSPP - OPER)')
import h5py
h5f_a = h5py.File('/Users/tomrink/20241107055000.nc', 'r')
h5f_b = h5py.File('/Users/tomrink/20241107072000.nc', 'r')
h5f_c = h5py.File('/Users/tomrink/20241107073000.nc', 'r')
h5f_d = h5py.File('/Users/tomrink/20241107170000.nc', 'r')
h5f_e = h5py.File('/Users/tomrink/20241107171000.nc', 'r')
h5f_f = h5py.File('/Users/tomrink/20241107202000.nc', 'r')
h5f_g = h5py.File('/Users/tomrink/20241107203000.nc', 'r')
import numpy as np
sst_cspp_all = np.concatenate(
[h5f_a['sst_cspp'][0, :], h5f_b['sst_cspp'][0, :], h5f_c['sst_cspp'][0, :], h5f_d['sst_cspp'][0, :],
h5f_e['sst_cspp'][0, :], h5f_f['sst_cspp'][0, :], h5f_g['sst_cspp'][0, :]])
sst_oper_all = np.concatenate(
[h5f_a['sst_oper'][0, :], h5f_b['sst_oper'][0, :], h5f_c['sst_oper'][0, :], h5f_d['sst_oper'][0, :],
h5f_e['sst_oper'][0, :], h5f_f['sst_oper'][0, :], h5f_g['sst_oper'][0, :]])
diff = sst_cspp_all - sst_oper_all
import matplotlib.pyplot as plt
plt.hist(diff, bins=40)
plt.yscale('log')
plt.xlabel('SST (\u00b0K)')
plt.title('ACSPO SST (CSPP - OPER), Clear Sky, 2024-11_07')
import numpy as np
c_a = np.isclose(sst_cspp_all, sst_oper_all, rtol=0.001)
c_a.shape
sst_cspp_all.shape
c_a_i = np.invert(c_a)
plt.scatter(sst_cspp_all[c_a_i], diff[c_a_i])
plt.close()
plt.scatter(sst_cspp_all[c_a_i], diff[c_a_i], s=1)
plt.title('ACSPO SST (CSPP-OPER) > rel_tol=0.001 vs SST')
plt.xlabel('SST (\u00b0K)')
plt.ylabel('SST (\u00b0K)')