Newer
Older
h5f_oper = h5py.File(oper_file, 'r')
h5f_cspp = h5py.File(cspp_file, 'r')
lon_cspp = get_grid_values_all(h5f_cspp, 'lon')
lat_cspp = get_grid_values_all(h5f_cspp, 'lat')
print('cspp shape: ', lat_cspp.shape)
c_idx = lat_cspp.shape[1] // 2
cntr_lon_cspp = lon_cspp[:, c_idx]
cntr_lat_cspp = lat_cspp[:, c_idx]
sst_cspp = get_grid_values_all(h5f_cspp, 'sea_surface_temperature')[0, ]
l2p_flags_cspp = get_grid_values_all(h5f_cspp, 'l2p_flags')[0, ]
lon_oper = get_grid_values_all(h5f_oper, 'lon')
lat_oper = get_grid_values_all(h5f_oper, 'lat')
cntr_lon_oper = lon_oper[:, c_idx]
cntr_lat_oper = lat_oper[:, c_idx]
print('oper shape: ', lat_oper.shape)
sst_oper = get_grid_values_all(h5f_oper, 'sea_surface_temperature')[0, ]
l2p_flags_oper = get_grid_values_all(h5f_oper, 'l2p_flags')[0, ]
# generate a ndarray of boolean
cspp_clear = (l2p_flags_cspp & (1 << 15)) != 0
oper_clear = (l2p_flags_oper & (1 << 15)) != 0
start_idx_oper = -1
stop_idx_oper = -1
start_idx_cspp = -1
stop_idx_cspp = -1
for k in range(len(cntr_lat_oper)):
c_a = np.isclose(cntr_lat_oper[k], cntr_lat_cspp)
if np.size(np.nonzero(c_a)[0]) == 1:
if start_idx_oper == -1:
start_idx_oper = k
start_idx_cspp = np.nonzero(c_a)[0][0]
else:
stop_idx_oper = k
stop_idx_cspp = np.nonzero(c_a)[0][0]
print('oper start, stop ', start_idx_oper, stop_idx_oper)
print('cspp start, stop ', start_idx_cspp, stop_idx_cspp)
lon_cspp = lon_cspp[start_idx_cspp:stop_idx_cspp, :]
lat_cspp = lat_cspp[start_idx_cspp:stop_idx_cspp, :]
lon_oper = lon_oper[start_idx_oper:stop_idx_oper, :]
lat_oper = lat_oper[start_idx_oper:stop_idx_oper, :]
cspp_clear = cspp_clear[start_idx_oper:stop_idx_oper, :]
oper_clear = oper_clear[start_idx_oper:stop_idx_oper, :]
overlap_shape = lon_cspp.shape
print('overlap shape, size: ', overlap_shape, np.size(lon_cspp))
print(np.sum(np.isclose(lon_cspp, lon_oper, rtol=0.001)))
print(np.sum(np.isclose(lat_cspp, lat_oper, rtol=0.001)))
sst_cspp = sst_cspp[start_idx_cspp:stop_idx_cspp, :].flatten()
sst_oper = sst_oper[start_idx_oper:stop_idx_oper, :].flatten()
oper_clear = oper_clear.flatten()
cspp_clear = cspp_clear.flatten()
both_clear = oper_clear & cspp_clear
sst_cspp = sst_cspp[both_clear]
sst_oper = sst_oper[both_clear]
lon_cspp = lon_cspp.flatten()
lat_cspp = lat_cspp.flatten()
lon_oper = lon_oper.flatten()
lat_oper = lat_oper.flatten()
lon_cspp = lon_cspp[both_clear]
lat_cspp = lat_cspp[both_clear]
lon_oper = lon_oper[both_clear]
lat_oper = lat_oper[both_clear]
both_valid = np.invert(np.isnan(sst_cspp)) & np.invert(np.isnan(sst_oper))
print('number of clear and valid SSTs in both: ', np.sum(both_valid))
valid_sst_cspp = sst_cspp[both_valid]
valid_sst_oper = sst_oper[both_valid]
valid_lon_cspp = lon_cspp[both_valid]
valid_lat_cspp = lat_cspp[both_valid]
valid_lon_oper = lon_oper[both_valid]
valid_lat_oper = lat_oper[both_valid]
xarray_data = xr.Dataset({
'sst_cspp': xr.DataArray([valid_sst_cspp], coords=None, dims=None, name='sst_cspp'),
'sst_oper': xr.DataArray([valid_sst_oper], coords=None, dims=None, name='sst_oper'),
'cspp_lat': xr.DataArray([valid_lat_cspp], coords=None, dims=None, name='cspp_lat'),
'cspp_lon': xr.DataArray([valid_lon_cspp], coords=None, dims=None, name='cspp_lon'),
'oper_lat': xr.DataArray([valid_lat_oper], coords=None, dims=None, name='oper_lat'),
'oper_lon': xr.DataArray([valid_lon_oper], coords=None, dims=None, name='oper_lon'),
})
if outfile is not None:
xarray_data.to_netcdf('/Users/tomrink/sst_values.nc')
np.sum(np.isclose(valid_sst_cspp, valid_sst_oper, rtol=0.001))/np.sum(both_valid))
# print(np.histogram((sst_cspp[both_valid] - sst_oper[both_valid]), bins=10))